Skip to main content
Log in

Liver Function, Quantified by LiMAx Test, After Major Abdominal Surgery. Comparison Between Open and Laparoscopic Approach

  • Original Scientific Report
  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Introduction

Major abdominal surgery may lead to a systemic inflammatory response (SIRS) with a risk of organ failure. One possible trigger for a postoperative hepatic dysfunction is an altered hepatic blood flow during SIRS, resulting in a decreased oxygen delivery. This pilot study investigated the role of liver dysfunction measured by the LiMAx test after major abdominal surgery, focussing on open and laparoscopic surgical approaches.

Methods

We prospectively investigated 25 patients (7 females and 18 males, age range 55–72 years) scheduled for upper abdominal surgery. The LiMAx test, ICG-PDR and duplex sonography were carried out preoperatively, followed by postoperative days (PODs) 1, 3, 5 and 10. Laboratory parameters and clinical parameters were measured daily. Clinical outcome parameters were examined at the end of treatment. The population was divided into group A (laparotomy) versus group B (laparoscopy).

Results

LiMAx values decreased significantly on POD 1 (290 µg/kg/h, P < 0.001), followed by a significant increase at POD 3 (348 µg/kg/h, P = 0.013). Only INR showed a significant increase on POD 1 (1.26, P < 0.001). Duplex sonography and ICG-PDR revealed a hyper-dynamic liver blood flow. No differences between group A and B were found.

Conclusions

Hepatic dysfunction after major abdominal surgery is evident and underestimated. The LiMAx test provides an adequate tool to determine liver dysfunction. Open and laparoscopic approaches appeared similar in terms of liver dysfunction and postoperative SIRS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fink-Neuboeck N, Lindenmann J, Bajric S et al (2016) Clinical impact of interleukin 6 as a predictive biomarker in the early diagnosis of postoperative systemic inflammatory response syndrome after major thoracic surgery: a prospective clinical trial. Surgery 160:443–453

    Article  PubMed  Google Scholar 

  2. Bakker J, Gris P, Coffernils M et al (1996) Serial blood lactate levels can predict the development of multiple organ failure following septic shock. Am J Surg 171:221–226

    Article  CAS  PubMed  Google Scholar 

  3. Fry DE, Pearlstein L, Fulton RL et al (1980) Multiple system organ failure: the role of uncontrolled infection. Arch Surg 115:136–140

    Article  CAS  PubMed  Google Scholar 

  4. Goris RJ, te Boekhorst TP, Nuytinck JK et al (1985) Multiple-organ failure: generalized autodestructive inflammation? Arch Surg 120:1109–1115

    Article  CAS  PubMed  Google Scholar 

  5. Perl TM, Dvorak L, Hwang T et al (1995) Long-term survival and function after suspected gram-negative sepsis. JAMA 274:338–345

    Article  CAS  PubMed  Google Scholar 

  6. Vincent JL, de Mendonca A, Cantraine F et al (1998) Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on "sepsis-related problems" of the European Society of Intensive Care Medicine. Crit Care Med 26:1793–1800

    Article  CAS  PubMed  Google Scholar 

  7. Stockmann M, Lock JF, Riecke B et al (2009) Prediction of postoperative outcome after hepatectomy with a new bedside test for maximal liver function capacity. Ann Surg 250:119–125

    Article  PubMed  Google Scholar 

  8. Suttner SW, Surder C, Lang K et al (2001) Does age affect liver function and the hepatic acute phase response after major abdominal surgery? Intensive Care Med 27:1762–1769

    Article  CAS  PubMed  Google Scholar 

  9. Sakka SG, Reinhart K, Meier-Hellmann A (2002) Prognostic value of the indocyanine green plasma disappearance rate in critically ill patients. Chest 122:1715–1720

    Article  PubMed  Google Scholar 

  10. Dindo D, Demartines N (2004) Clavien PA classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 240:205–213

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mochida S, Takikawa Y, Nakayama N et al (2011) Diagnostic criteria of acute liver failure: a report by the Intractable Hepato-Biliary Diseases Study Group of Japan. Hepatol Res 41:805–812

    Article  PubMed  Google Scholar 

  12. Wlodzimirow KA, Eslami S, Abu-Hanna A et al (2012) Systematic review: acute liver failure—one disease, more than 40 definitions. Aliment Pharmacol Ther 35:1245–1256

    Article  CAS  PubMed  Google Scholar 

  13. Asadollahi K, Beeching NJ, Gill GV (2010) Leukocytosis as a predictor for non-infective mortality and morbidity. QJM 103:285–292

    Article  CAS  PubMed  Google Scholar 

  14. Guasti L, Dentali F, Castiglioni L et al (2011) Neutrophils and clinical outcomes in patients with acute coronary syndromes and/or cardiac revascularisation. A systematic review on more than 34,000 subjects. Thromb Haemost 106:591–599

    Article  CAS  PubMed  Google Scholar 

  15. Stockmann M, Lock JF, Malinowski M et al (2010) The LiMAx test: a new liver function test for predicting postoperative outcome in liver surgery. HPB 12:139–146

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kimura S, Yoshioka T, Shibuya M et al (2001) Indocyanine green elimination rate detects hepatocellular dysfunction early in septic shock and correlates with survival. Crit Care Med 29:1159–1163

    Article  CAS  PubMed  Google Scholar 

  17. Sakka SG (2007) Assessing liver function. Curr Opin Crit Care 13:207–214

    Article  PubMed  Google Scholar 

  18. Haag K, Rossle M, Ochs A et al (1999) Correlation of duplex sonography findings and portal pressure in 375 patients with portal hypertension AJR. Am J Roentgenol 172:631–635

    Article  CAS  Google Scholar 

  19. Sabba C, Ferraioli G, Genecin P et al (1991) Evaluation of postprandial hyperemia in superior mesenteric artery and portal vein in healthy and cirrhotic humans: an operator-blind echo-Doppler study. Hepatology 13:714–718

    Article  CAS  PubMed  Google Scholar 

  20. Uzawa M, Karasawa E, Sugiura N et al (1993) Doppler color flow imaging in the detection and quantitative measurement of the gastroduodenal artery blood flow. J Clin Ultrasound 21:9–17

    Article  CAS  PubMed  Google Scholar 

  21. Sharpe DA, Mitchel IM, Kay EA et al (1999) Enhancing liver blood flow after cardiopulmonary bypass: the effects of dopamine and dopexamine. Perfusion 14:29–36

    Article  CAS  PubMed  Google Scholar 

  22. Heintz R, Svensson CK, Stoeckel K et al (1986) Indocyanine green: pharmacokinetics in the rabbit and relevant studies of its stability and purity. J Pharm Sci 75:398–402

    Article  CAS  PubMed  Google Scholar 

  23. Marik PE, Flemmer M (2012) The immune response to surgery and trauma: implications for treatment. J Trauma Acute Care Surg 73:801–808

    Article  CAS  PubMed  Google Scholar 

  24. Paumgartner G (1975) The handling of indocyanine green by the liver. Schweiz Med Wochenschr 105:1–30

    CAS  PubMed  Google Scholar 

  25. Trager K, Brinkmann A, Georgieff M et al (2000) The effect of hepatosplanchnic circulation in treatment of trauma and sepsis. Beyond O2-supply O2-uptake relationship? Der Anaesth 49:451–454

    Article  CAS  Google Scholar 

  26. Bauer M, Press AT, Trauner M (2013) The liver in sepsis: patterns of response and injury. Curr Opin Crit Care 19:123–127

    Article  PubMed  Google Scholar 

  27. Kaffarnik MF, Lock JF, Vetter H et al (2013) Early diagnosis of sepsis-related hepatic dysfunction and its prognostic impact on survival: a prospective study with the LiMAx test. Crit Care 17:R259

    Article  PubMed  PubMed Central  Google Scholar 

  28. Smithers BM, Gotley DC, Martin I et al (2007) Comparison of the outcomes between open and minimally invasive esophagectomy. Ann Surg 245:232–240

    Article  PubMed  PubMed Central  Google Scholar 

  29. Van den Broek WT, Makay O, Berends FJ et al (2004) Laparoscopically assisted transhiatal resection for malignancies of the distal esophagus. Surg Endosc 18:812–817

    Article  PubMed  Google Scholar 

  30. Sihag S, Kosinski AS, Gaissert HA et al (2016) Minimally invasive versus open esophagectomy for esophageal cancer: a comparison of early surgical outcomes from the Society of Thoracic Surgeons National Database. Ann Thorac Surg 101:1281–1289

    Article  PubMed  Google Scholar 

  31. Ignee A, Gebel M, Caspary WF et al (2002) Doppler imaging of hepatic vessels-review. Z Gastroenterol 40:21–32

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Kaffarnik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaffarnik, M., Stoeger, G., Liebich, J. et al. Liver Function, Quantified by LiMAx Test, After Major Abdominal Surgery. Comparison Between Open and Laparoscopic Approach. World J Surg 42, 557–566 (2018). https://doi.org/10.1007/s00268-017-4170-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-017-4170-9

Navigation