Skip to main content

Advertisement

Log in

Potential Development of Biochar in Africa as an Adaptation Strategy to Climate Change Impact on Agriculture

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

One of the most important obstacles to increasing agricultural production yields worldwide, especially in developing economies such as those in Africa is the continued degradation of soils due to climate change. In response to this threat, one of the strategies advocated is biochar technology, which is one of the emerging sustainable and climate-friendly soil amendments. This article reviews a brief description of biochar, the advantages and disadvantages of its use, and the prospects for developing its potential impact on agricultural productivity in African countries with a case study in Burkina Faso. Biochar is mainly useful for soil carbon sequestration, increasing and maintaining soil fertility, environmental management, and as a renewable energy source. However, it can have secondary effects including negative impacts on human health, pollution, and water quality. Furthermore, the positive results of biochar use in Africa suggest a prospect for ensuring the feasibility of biochar technology in policy decisions as a sustainable alternative to agricultural land management in the combat against climate change. As recommendations, a combination of improved seed varieties, and SWC (Soil and Water Conservation) techniques with the application of Biochar will be a perfect innovation for an intelligent adaptation practice to the destructive action of climate change in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets analyzed during the current study are not publicly available because this is a part of the dataset for my Ph.D. thesis which I didn’t finish yet and the dataset must be confidential for now but are available from the corresponding author on reasonable request.

Notes

  1. https://ourworldindata.org/emissions-by-sector

References

  • Adekiya AO, Agbede TM, Olayanju A, Ejue WS, Adekanye TA, Adenusi TT, Ayeni JF (2020) Effect of biochar on soil properties, soil loss, and cocoyam yield on a tropical sandy loam alfisol. Hindawi Sci World J 2020:9391630. https://doi.org/10.1155/2020/9391630

    Article  CAS  Google Scholar 

  • Ahmadvand M, Soltani J (2020) Effect of wheat-straw biochar on nitrate removal in laboratory denitrifying bioreactors. Int J Environ Res 14(2):205–213. https://doi.org/10.1007/s41742-020-00248-3

    Article  CAS  Google Scholar 

  • Akoto-Danso EK, Manka’abusi D, Steiner C, Werner S, Haring V, Nyarko G, Bernd Marschner B, Drechsel P, Buerkert A (2019) Agronomic effects of biochar and wastewater irrigation in urban crop production of Tamale, northern Ghana. Nutr Cycl Agroecosyst 115:231–247. https://doi.org/10.1007/s10705-018-9926-6

  • Alvar-Beltrán J, Dao A, Marta AD, Heureux A, Sanou J, Orlandini S (2020) Farmers’ perceptions of climate change and agricultural adaptation in Burkina Faso. Atmosphere 11, 0827. https://doi.org/10.3390/atmos11080827

  • Angst TE, Patterson CJ, Reay DS, Anderson P, Peshkur TA, Sohi SP (2013) Biochar diminishes nitrous oxide and nitrate leaching from diverse nutrient sources. J Environ Qual 42:672–682

    Article  CAS  Google Scholar 

  • Ayantunde AA, Oluwatosin BO, Yameogo V, van Wijk M(2020) Perceived benefits, constraints and determinants of sustainable intensification of mixed crop and livestock systems in the Sahelian zone of Burkina Faso. Int J Agri Sustain 18:84–98. https://doi.org/10.1080/14735903.2019.1698494

    Article  Google Scholar 

  • Bakshi S, Aller DM, Laird DA, Chintala R (2016) Comparison of the physical and chemical properties of laboratory and field-aged biochars. J Environ Qual 45:P1627–P1634. https://doi.org/10.2134/jeq2016.02.0062

    Article  CAS  Google Scholar 

  • Barbosa JZ, Motta ACV, Corrêa RS, Melo V, de F, Muniz AW, Martins GC, Silva L, de CR, Teixeira WG, Young SD, Broadley MR (2020) Elemental signatures of an Amazonian Dark Earth as result of its formation process. Geoderma 361:114085. https://doi.org/10.1016/j.geoderma.2019.114085

    Article  CAS  Google Scholar 

  • Barrow CJ (2012) Biochar: potential for countering land degradation and for improving agriculture. Appl Geogr 34:21–28

    Article  Google Scholar 

  • Barry H, Julie M (2010) Commercial scale agricultural biochar field trial in Québec, Canada over two years: effects of biochar on soil fertility, biology, and crop productivity and quality, www.dynamotive.com/assets/resources/BlueLeaf-Biochar-FT0809.pdf

  • Baskar G, Kalavathy G, Aiswarya R, Abarna Ebenezer Selvakumari I (2019) Advances in bio-oil extraction from nonedible oil seeds and algal biomass. In Azad K (ed.), Advances in eco-fuels for a sustainable environment, a volume in Woodhead Publishing series in energy. Woodhead Publishing, pp. 187–210. https://doi.org/10.1016/B978-0-08-102728-8.00007-3

  • Baveye B (2007) Soils and runaway global warming: Terra incognita. J Soil Water Conserv 62:139A

  • Berazneva J (2013) Economic value of crop residues in African smallholder agriculture. In 2013 Annual Meeting, AAEA and CAES Annual Meeting. Washington, DC. pp. 1–25

  • Blanco-Canqui H (2017) Biochar and soil physical properties. Soil Sci Soc Am J 81:687–711

    Article  CAS  Google Scholar 

  • Brassard P, Godbout S, Raghavan V (2016) Soil biochar amendment as a climate change mitigation tool: key parameters and mechanisms involved. J Environ Manag 181:484–497

    Article  CAS  Google Scholar 

  • Bruun EW, Petersen C, Strobel BW, Hauggaard-Nielsen H(2012) Nitrogen and carbon leaching in repacked sandy soil with added fine particulate biochar. Soil Sci Soc Am J 76:1142–1148. https://doi.org/10.2136/sssaj2011.0101

    Article  CAS  Google Scholar 

  • Cornelissen GV, Martinsen V, Shitumbanuma V, Alling GD, Breedveld DW, Rutherford M, Sparrevik M, Hale SE, Obia A, Mulder J (2013) Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia. Agronomy 3(2):256–274

    Article  Google Scholar 

  • Cross A, Sohi SP (2013) A method for screening the relative long-term stability of biochar. Gcb Bioener 5:215–220

    Article  CAS  Google Scholar 

  • Ding Y, Liu YG, Liu SB, Huang XX, Li ZW, Tan XF, Zeng GM, Zhou L (2017) Potential benefits of biochar in agricultural soils: a review. Pedosphere 27(4):645–661

    Article  CAS  Google Scholar 

  • Ding Y, Liu Y, Liu S, Li Z, Tan X, Huang X, Zeng G, Zhou L, Zheng B (2016) Biochar to improve soil fertility. A review. Agron Sustain Dev 36(2):36. https://doi.org/10.1007/s13593-016-0372-z

    Article  CAS  Google Scholar 

  • Du J, Zhang Y, Qu M, Yin Y, Fan K, Hu B, Zhang H, Wei M, Ma C (2019) Effects of biochar on the microbial activity and community structure during sewage sludge composting. Bioresour Technol 272:171–179

    Article  CAS  Google Scholar 

  • Fan YV, Klemes JJ, Lee CT (2021) Environmental performance and techno-economic feasibility of different biochar applications: an overview. Chem Eng Trans 83:469–474. https://doi.org/10.3303/CET2183079

    Article  Google Scholar 

  • Faye A, Stewart ZP, Diome K, Edward CT, Fall D, Ganyo DKK, Prasad PV (2021) Single application of biochar increases fertilizer efficiency, C sequestration, and pH over the long-term in sandy soils of Senegal. Sustainability 13(21):11817

    Article  CAS  Google Scholar 

  • Fru BS, Angwafo TE, Tchamba NM, Ngome AF, Ngome TP (2018) Environmental and socio-economic feasibility of biochar application for cassava production in the bimodal rainforest zone of Cameroon. Int J Rural Dev. Environ. Health Res. 2(1) https://doi.org/10.22161/ijreh.2.1.1

  • Fungo B, Lehmann J, Kalbitz K, Thiongo M, Okeyo I, Tenywa M, et al (2017) Aggregate size distribution in a biochar-amended tropical Ultisol under conventional hand-hoe tillage. Soil Tillage Res 165:190–197. https://doi.org/10.1016/j.still.2016.08.012

    Article  Google Scholar 

  • Fuss S, Lamb WF, Callaghan MW, Hilaire J, Creutzig F, Amann T, Beringer T, De Oliveira Garcia W, Hartmann J, Khanna T, Luderer G, Nemet GF, Rogelj J, Smith P, Vicente JV, Wilcox J, Del Mar Zamora Dominguez M, Minx JC (2018) Negative emissions - Part 2: costs, potentials, and side effects. Environ Res Lett 13:63002. https://doi.org/10.1088/1748-9326/aabf9f

    Article  CAS  Google Scholar 

  • Guo M (2020) The 3R principles for applying biochar to improve soil health. Soil Syst 4(1):9. https://doi.org/10.3390/soilsystems4010009

    Article  CAS  Google Scholar 

  • Gwenzi W, Chaukura N, Mukome FND, Machado S, Nyamasoka B (2015) Biochar production and applications in sub-Saharan Africa: opportunities, constraints, risks, and uncertainties. J Environ Manag 150:250–261. https://doi.org/10.1016/j.jenvman.2014.11.027

    Article  CAS  Google Scholar 

  • Häring V, Manka’abusi D, Akoto-Danso EK, Werner S, Atiah K, Steiner C, Désiré JP, Lompo DJP, Adiku S, Buerkert A, Marschner B (2017) Effects of biochar, waste water irrigation and fertilization on soil properties in West African urban agriculture. Sci Rep www.nature.com/scientificreports

  • Hawken P (2018). Drawdown. Comment inverser le cours du réchauffement planétaire. Ouvrage publié sous la direction de Cyril Dion. p. 174–178. Copyright Actes Sud. ISBN 978-2-330-09613-7. www.actes-sud.fr

  • Heshmati EM (2021) Impact of climate change on life. In: Environmental issues and sustainable development. IntechOpen 1–20. https://doi.org/10.5772/intechopen.94538

  • Hossain MK, Strezov V, Nelson PF(2015) Comparative assessment of the effect of wastewater sludge biochar on growth, yield and metal bioaccumulation of cherry tomato. Pedosphere 25:680–685

    Article  CAS  Google Scholar 

  • Husk B (2009) Preliminary evaluation of biochar in a commercial farming operation in Canada, étude réalisée par Blue Leaf Inc. http://www.blue-leaf.ca/main-en/report_a3.php

  • Husk B, Major J (2010) Commercial scale agricultural biochar field trial in Québec, Canada over two years: effects of biochar on soil fertility, biology and crop productivity and quality. Dynamotive Energy Systems, February

  • INSD (2019) (Institut National de la Statistique et de la Démographie). Annuaire statistique 2019 de la région des Hauts Bassins? Burkina Faso

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada Y, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR (eds), Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA

  • IPCC (2019) Résumé à l’intention des décideurs, Changement climatique et terres émergées: rapport spécial du GIEC sur le changement climatique, la désertification, la dégradation des sols, la gestion durable des terres, la sécurité alimentaire et les flux de gaz à effet de serre dans les écosystèmes terrestres. In: Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner H-O, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, Ferrat M, Haughey E, Luz S, Neogi S, Pathak M, Petzold J, Portugal Pereira J, Vyas P, Huntley E, Kissick K, Belkacemi M, Malley J. Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA; 2014. Sous presse. https://www.ipcc.ch/site/assets/uploads/sites/4/2020/06/SRCCL_SPM_fr.pdf.

  • IPCC (2022) Summary for policymakers. In: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Portner HO, Roberts DC, Tignor M, Poloczanska ES, Mintenbeck K, Alegría A, Craig M, et al. Cambridge University Press, Cambridge, U.K. and New York, N.Y., USA (pp 3–33)

  • Ishimori T, Takahashi Y, Sato H, Hassan A, Iwamoto Y., Pandian GN, Hori H(2017) Low temperature carbonization of chicken manure to char andits effect on growth of Oryza sativa L. Koshihikari and Brassica rapa komatsuna. Euro-Mediterr J Environ Integr 2:1–10

    Article  Google Scholar 

  • Jatav HS, Singh SK, Jatav SS, Rajput VD, Parihar M, Mahawer SK, Singhal RK (2020) Importance of biochar in agriculture and its consequence. Applications of Biochar for Environmental Safety, 109

  • Jeffery S, Verheijen FGAA, Kammann C, Abalos D (2016) Biochar effects on methane emissions from soils: a meta-analysis. Soil Biol Biochem 101:251–258. https://doi.org/10.1016/j.soilbio.2016.07.021

    Article  CAS  Google Scholar 

  • Kabore PN, Barbier B, Ouoba P, Kiema A, Some L, Ouedraogo A (2019) Perceptions du changement climatique, impacts environnementaux et stratégies endogènes d’adaptation par les producteurs du Centre-nord du Burkina Faso. VertigO, 19.

  • Karimi V, Karami E, Keshavarz M (2018) Climate change and agriculture: impacts and adaptive responses in Iran. J Integr Agric 17(1):1–15

    Article  Google Scholar 

  • Kavitha B, Reddy PVL, Kim B, Lee SS, Pandey SK, Kim KH(2018) Benefits and limitations of biochar amendment in agricultural soils: A review. J Environ Manag 227:146–154

    Article  CAS  Google Scholar 

  • Khonje MG, Manda J, Mkandawire P, Tufa AH, Alene AD(2018) Adoption and welfare impacts ofmultiple agricultural technologies: evidence from eastern Zambia. Agri Econ 49:599–609

    Article  Google Scholar 

  • Khorram MS, Wang Y, Jin X, Fang H, Yu Y (2015) Reduced mobility of fomesafen through enhanced adsorption in biochar-amended soil. Environ Toxicol Chem 34(6):1258–1266

    Article  CAS  Google Scholar 

  • Kimetu JM, Lehmann J, Ngoze SO, Mugendi DN, Kinyangi JM, Riha S, Verchot L, Recha JW, Pell AN (2008) Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems 11:726–739

    Article  CAS  Google Scholar 

  • Koyama S, Hayashi H(2017) Rice yield and soil carbon dynamics over three years of applying rice husk charcoal to an Andosol paddy field. Plant Prod Sci 20:176–182

    Article  CAS  Google Scholar 

  • Kuppusamy S, Thavamani P, Megharaj M, Venkateswarlu K, Naidu R (2016) Agronomic and remedial benefits and risks of applying biochar to soil: current knowledge and future research directions. Environ Int 87:1–12

    Article  CAS  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota - a review. Soil Biol Biochem 43(9):1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management: an Introduction. In: Lehmann J, Joseph S (eds) Biochar for environmental management, science, technology, and implementation. Taylor & Francis Group, pp. 1–12

  • Li J, Li Y, Wu M, Zhang Z, Lu J (2013) Effectiveness of low temperature biochar in controlling the release and leaching of herbicides in soil. Plant Soil 370(1):333–344

    Article  CAS  Google Scholar 

  • Li S, Wang S, Shangguan Z (2019) Combined biochar and nitrogen fertilization at appropriate rates could balance the leaching and availability of soil inorganic nitrogen. Agric Ecosyst Environ 276:21–30. https://doi.org/10.1016/j.agee.2019.02.013

    Article  CAS  Google Scholar 

  • Liang Z, Zhang L, Li W, Zhang J, Frewer LJ (2021) Adoption of combinations of adaptive and mitigatory climate-smart agricultural practices and its impacts on rice yield and income: empirical evidence from Hubei, China. Clim Risk Manag 32:100314

    Article  Google Scholar 

  • Liu S (1996) Silicosis caused by rice husk ashes. J Occup Health 38. www.who.int/mediacentre/factsheets/fs238/en/

  • Lompo DJP, Yé L, Balboné B, et Sori SI (2021) Effets combinés du biocharbon et du fumier sur les propriétés physico-chimiques d’un sol ferrugineux tropical sous culture de mil en zone semi-aride du Burkina Faso. J Appl Biosci 157:16161–16181

    Google Scholar 

  • Macedo RS, Teixeira WG, Corrêa MM, Martins GC, Vidal-Torrado P (2017) Pedogenetic processes in anthrosols with pretic horizon (Amazonian Dark Earth) in Central Amazon, Brazil. PLOS One 12(5):e0178038. https://doi.org/10.1371/journal.pone.0178038. Article

    Article  CAS  Google Scholar 

  • Mahmoud Y, Njenga M, Sundberg C, Roing K, Roing de Nowina C (2021) Soils, sinks, and smallholder farmers: Examining the benefits of biochar energy transitions in Kenya. Energy Res Soc Sci 75(2021):102033

    Article  Google Scholar 

  • Manka’abusi D, Steiner C, Akoto-Danso EK, Lompo DJP, Hearing V, Werner S, Marschner B, Buerkert A(2019) Biochar application and wastewater irrigation in urban vegetable production of Ouagadougou, Burkina Faso. Nutr Cycl Agroecosyst 115:263–279. https://doi.org/10.1007/s10705-019-09969-0

    Article  CAS  Google Scholar 

  • Muhammad N, Nafees M, Khan MH, Ge L, Lisak G(2020) Effect of biochars on bioaccumulation and human health risksof potentially toxic elements in wheat (Triticum aestivum L.) cultivated on industrially contaminated soil. Environ Pollut 260:113887

    Article  CAS  Google Scholar 

  • Mukherjee A, Lal R (2014) The biochar dilemma. Soil Res 52: 217–230. CSIRO publishing

  • Mukome FN, Six J, Parikh SJ (2013) The effects of walnut shell and wood feedstock biochar amendments on greenhouse gas emissions from a fertile soil. Geoderma 200:90–98

    Article  Google Scholar 

  • Nair VD, Nair PR, Dari B, Freitas AM, Chatterjee N, Pinheiro FM (2017) Biochar in the agroecosystem–climate-change–sustainability nexus. Front Plant Sci 8:2051

    Article  Google Scholar 

  • Ndhlovu M, Kiggundu N, Wanyama J, Banadda N (2017) Effects of incorporating biochar into the soil using power tiller and. Sustain Agric Res 6(4):93–103

    Google Scholar 

  • Ng’ombe JN, Kalinda TH, Tembo G (2017) Does adoption of conservation farming practices result in increased crop revenue? Evidence from Zambia. Agrekon 56:205–221

    Article  Google Scholar 

  • Omulo G (2020) Biochar potential in improving agricultural production in East Africa. Intechopen. https://doi.org/10.5772/intechopen.92195

  • Oni BA, Oziegbe O, Olawole OO (2019) Significance of biochar application to the environment and economy. Ann Agric Sci 64(2):222–236

    Article  Google Scholar 

  • Palansooriya KN, Ok YS, Awad YM, Lee SS, Sung JK, Koutsospyros A, Moon DH(2019) Impacts of biochar application on upland agriculture: a review. J Environ Manag 234:52–64

    Article  CAS  Google Scholar 

  • Patel S, Kundu S, Halder P, Veluswamy G, Pramanik B, Paz-Ferreiro J, Surapaneni A, Shah K (2019) Slow pyrolysis of biosolids in a bubbling fluidised bed reactor using biochar, activated char and lime. J Anal Appl Pyrol 144:104697

    Article  CAS  Google Scholar 

  • Prapagdee S, Tawinteung N (2017) Effects of biochar on enhanced nutrient use efficiency of green bean, Vigna radiata L. Environ Sci Pollut Res Int 24(10):9460–9467. https://doi.org/10.1007/s11356-017-8633-1

    Article  CAS  Google Scholar 

  • Purakayastha TJ, Kumari S, Pathak H(2015) Characterisation, stability, and microbial effects of four biochars produced from crop residues. Geoderma 239:293–303

    Article  Google Scholar 

  • Purakayastha TJ, Bera T, Bhaduri D, Sarkar B, Mandal S, Wade P, Kumari S, Biswas S, Menon M, Pathak H, Tsang CW(2019) A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: pathways to climate change mitigation and global food security. Chemosphere 227:345–365

    Article  CAS  Google Scholar 

  • Ramzani PMA, Shan L, Anjum S, Ronggui H, Iqbal M, Virk ZA, Kausar S(2017) Improved quinoa growth, physiological response, and seed nutritional quality in three soils having different stresses by the application of acidified biochar and compost Plant Physiol Biochem 116:127–138

    Article  CAS  Google Scholar 

  • Rees F (2014) Mobilité des métaux dans les systèmes sol-plante-biochar. Université de Lorraine. http://www.cfcopies.com/V2/leg/leg_droi.php

  • Reibe K, Rob C-L, Ellmer F(2015) Hydro-/Biochar application to sandy soils:impact on yield components and nutrients of spring wheat in pots. Arch Agron Soil Sci 61:1055–1060. https://doi.org/10.1080/03650340.2014.977786

    Article  CAS  Google Scholar 

  • Rogers PM, Fridahl M, Yanda P, Hansson A, Pauline N, Haikola S (2017) Socio- economic determinants for biochar deployment in the Southern Highlands of Tanzania. Energies 2022(15):144. https://doi.org/10.3390/en15010144

    Article  Google Scholar 

  • Salleh M (2017) Development of biochar production in Malaysia. In Proceedings of the International Symposium on Biochar. Kangwon National University, South Korea

  • Shabbir A, Saqib M, Murtaza G, Abbas G, Imran M, Rizwan M, …& Javeed HMR (2021) Biochar mitigates arsenic-induced human health risks and phytotoxicity in quinoa under saline conditions bymodulating ionic and oxidative stress responses. Environ Pollut 287:117348

  • Smith P (2016) Soil carbon sequestration and biochar as negative emission technologies. Glob Change Biol 22:1315–1324. https://doi.org/10.1111/gcb.13178

    Article  Google Scholar 

  • Sohi S, Lopez-Capel E, Krull E, Bol R (2009). Biochar, climate change and soil: a review to guide further research. CSIRO Land and Water Science Report 5:17–31

  • Spokas KA(2010) Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon manag 1:289–303

    Article  CAS  Google Scholar 

  • Steiner C, Bellwood-Howard I, Häring V, Tonkudor K, Addai F, Atiah K, ... & Buerkert A (2018) Participatory trials of on-farm biochar production and use in Tamale, Ghana. Agronomy for sustainable development 38:1–10

  • Tammeorg P, Simojoki A, Mäkelä P, Stoddard FL, Alakukku L, Helenius J(2014) Biochar application to a fertile sandy clay loam in boreal conditions: effects on soil properties and yield formation of wheat, turnip rape and faba bean. Plant Soil 374:89–107

    Article  CAS  Google Scholar 

  • Teklewold H, Kassie M, Shiferaw B, Köhlin G(2013) Cropping system diversification, conservation tillage and modern seed adoption in Ethiopia:Impacts on household income, agrochemical use and demand for labor. Ecol Econ 93:85–93

    Article  Google Scholar 

  • The African Biodiversity Network, Biofuelwatch et The Gaia Foundation Deuxième édition – décembre 2010. L’accaparement des terres lié à la production de biochar: les impacts sur l’Afrique. https://www.biofuelwatch.org.uk/wp-content/uploads/biochar_africa_briefing2.pdf

  • Tobignaré FM, Pam Z, Kimseyinga S (2022) Factors affecting sustainable agricultural intensification in Burkina Faso. Int J Agric Sustain, https://doi.org/10.1080/14735903.2022.2070341

  • Utomo WH, Kusuma Z, Nugroho WH (2011) Soil fertility status, nutrient uptake, and maize (Zea mays L.) yield following biochar and cattle manure application on sandy soils of Lombok, Indonesia. J Tropical Agric 49(1/2):47–52

    Google Scholar 

  • Vandecasteele B, Sinicco T, D’Hose T, Nest TV, Mondini C(2016) Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake. J Environ Manag 168:200–209

    Article  CAS  Google Scholar 

  • Wang D, Jiang P, Zhang H, Yuan W(2020) Biochar production and applications in agro and forestry systems: A review. Sci Total Environ 723:137775

    Article  CAS  Google Scholar 

  • Wang J, Odinga ES, Zhang W, Zhou X, Yang B, Waigi MG, Gao Y(2019) Polyaromatic hydrocarbons in biochars and human health risks of food crops grown in biochar-amended soils: A synthesis study. Environ Int 130:104899

    Article  CAS  Google Scholar 

  • Wang M, Awasthi MK, Wang Q, Chen H, Ren X, Zhao J, Li R, Zhang Z (2017) Comparison of additives amendment for mitigation of greenhouse gases and ammonia emission during sewage sludge co-composting based on correlation analysis. Bioresour Technol 243:520–527

    Article  CAS  Google Scholar 

  • Yeboah E, Ofori P, Quansah GW, Dugan E, Sohi SP (2009) Improving soil productivity through biochar amendments to soils. Afr J Environ Sci Technol 3(2):034–041

    CAS  Google Scholar 

  • Zang T, Wang H, Liu Y, Dai L, Zhou S, Ai S(2014) Biochar application to a fertile sandy clay loam inboreal conditions: effects on soil properties and yield formation of wheat, turnip rape and faba bean. Plant Soil 374:89–107

    Article  Google Scholar 

  • Zang T, Wang H, Liu Y, Dai L, Zhou S, Ai S(2020) Fe-doped biochar derived from waste sludge for degradation of rhodamine B via enhancing activation of peroxymonosulfate. Chemosphere 261:127616

    Article  CAS  Google Scholar 

  • Zhang H, Lin K, Wang H, Gan J (2010) Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene. Environ Pollut 158(9):2821–2825

    Article  CAS  Google Scholar 

  • Zhang Y, Diao X (2020) The changing role of agriculture with economic structural change–the case of China. China Econ Rev 62:101504

    Article  Google Scholar 

  • Zhang X, Luo Y, Müller K, Chen J, Lin Q, Xu J, Yishui T, Cong H, Wang H (2015) Research and application of biochar in China. Agricul Environ Appl biochar: Adv Barriers 63:377–407

Download references

Author information

Authors and Affiliations

Authors

Contributions

Sita KONE designed and collected the primary and secondary data and managed the research content and methodology and wrote the paper. Xavier GALIEGUE approved the structure and the writing of the paper, read the paper and made corrections, and approved it for publication.

Corresponding author

Correspondence to Sita Koné.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koné, S., Galiegue, X. Potential Development of Biochar in Africa as an Adaptation Strategy to Climate Change Impact on Agriculture. Environmental Management 72, 1189–1203 (2023). https://doi.org/10.1007/s00267-023-01821-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-023-01821-0

JEL codes

Keywords

Navigation