Skip to main content
Log in

Reproductive seasonality is a poor predictor of receptive synchrony and male reproductive skew among nonhuman primates

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Among nonhuman primates, male reproductive skew (i.e., the distribution of reproductive success across males) appears to be affected primarily by receptive synchrony and the number of males per group. These factors have been assumed to depend on reproductive seasonality, with strong seasonality increasing receptive synchrony, which in turn reduces the strength of male monopolization associated with more males and lower skew. Here we tested the importance of reproductive seasonality for 26 populations representing 15 species living in multimale groups. We obtained data from the literature on paternity, number of males per group, receptive synchrony, and three measures of seasonality of reproduction. We analyzed these data using bivariate regressions and hierarchical regression by sets and controlled for the effect of evolutionary relationships using phylogenetic generalized least squares. As expected, alpha male paternity decreased as the number of males per group increased as well as with increasing female receptive synchrony. Reproductive seasonality did not explain variation in reproductive skew over and above the variation explained by synchrony and the number of males. Reproductive seasonality alone only explained a small proportion of the variation in skew, and there was no strong association between reproductive seasonality and synchrony. The effects of receptive synchrony and reproductive seasonality as well as their link were reduced if we excluded captive populations. These results indicate that across primates male reproductive skew is related to the number of competitors in a group and that seasonality does not reliably predict synchrony or male reproductive skew.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alberts SC, Buchan JC, Altmann J (2006) Sexual selection in wild baboons: from mating opportunities to paternity success. Anim Behav 72:1177–1196

    Article  Google Scholar 

  • Altmann SA (1962) A field study of the sociobiology of rhesus monkeys, Macaca mulatta. Ann Acad Sci 102:338–435

    Article  CAS  Google Scholar 

  • Altmann J, Alberts SC, Haines SA, Dubach J, Muruthi P, Coote T, Geffen E, Cheesman DJ, Mututua RS, Saiyalel SN, Wayne RK, Lacy RC, Bruford MW (1996) Behavior predicts genetic structure in a wild primate group. Proc Natl Acad Sci USA 93:5797–5801

    Article  PubMed  CAS  Google Scholar 

  • Arnold C, Matthews LJ, Nunn CL (2010) The 10kTrees website: a new online resource for primate phylogeny. Evol Anthropol 19:114–118

    Article  Google Scholar 

  • Batschelet E (1981) Circular statistics in biology. Academic, London

    Google Scholar 

  • Birkhead TR, Biggins JD (1987) Reproductive synchrony and extra-pair copulation in birds. Ethology 74:320–334

    Article  Google Scholar 

  • Boesch C, Kohou G, Néné H, Vigilant L (2006) Male competition and paternity in wild chimpanzees of the Tai forest. Am J Phys Anthropol 130:103–115

    Article  PubMed  Google Scholar 

  • Borries C, Koenig A, Winkler P (2001) Variation of life history traits and mating patterns in female langur monkeys (Semnopithecus entellus). Behav Ecol Sociobiol 50:391–402

    Article  Google Scholar 

  • Brauch K, Hodges K, Engelhardt A, Fuhrmann K, Shaw E, Heistermann M (2008) Sex-specific reproductive behaviours and paternity in free-ranging Barbary macaques (Macaca sylvanus). Behav Ecol Sociobiol 62:1453–1466

    Article  Google Scholar 

  • Brockman DK, van Schaik CP (2005) Seasonality and reproductive function. In: van Schaik CP, Brockman DK (eds) Seasonality in primates: studies of living and extinct human and non-human primates. Cambridge University Press, New York, pp 269–305

    Chapter  Google Scholar 

  • Buston PM, Zink AG (2009) Reproductive skew and the evolution of conflict resolution: a synthesis of transactional and tug-of-war models. Behav Ecol 20:672–684

    Article  Google Scholar 

  • Buston PM, Reeve HK, Cant MA, Vehrencamp SL, Emlen ST (2007) Reproductive skew and the evolution of group dissolution tactics: a synthesis of concession and restraint models. Anim Behav 74:1643–1654

    Article  Google Scholar 

  • Cant MA (1998) A model for the evolution of reproductive skew without reproductive suppression. Anim Behav 55:163–169

    Article  PubMed  Google Scholar 

  • Carnes LM, Nunn CL, Lewis RJ (2011) Effects of the distribution of female primates on the number of males. PLoS One 6:e19853

    Article  PubMed  CAS  Google Scholar 

  • Clarke PMR, Henzi SP, Barrett L (2012) Estrous synchrony in a nonseasonal breeder: adaptive strategy or population process? Behav Ecol 23:573–581

    Article  Google Scholar 

  • Cooney R, Bennett NC (2000) Inbreeding avoidance and reproductive skew in a cooperative mammal. Proc R Soc B 267:801–806

    Article  PubMed  CAS  Google Scholar 

  • Cowlishaw G, Dunbar RIM (1991) Dominance rank and mating success in male primates. Anim Behav 41:1045–1056

    Article  Google Scholar 

  • de Ruiter JR, van Hooff JARAM (1993) Male-dominance rank and reproductive success in primate groups. Primates 34:513–523

    Article  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. Available from: http://www.R-project.org

  • Drent R, Daan S (1980) The prudent parent: energetic adjustments in avian breeding. Ardea 68:225–252

    Google Scholar 

  • Dunbar RIM (2000) Male mating strategies: a modeling approach. In: Kappeler PM (ed) Primate males: causes and consequences of variation in group composition. Cambridge University Press, Cambridge, pp 259–268

    Google Scholar 

  • Emlen ST, Oring LW (1977) Ecology, sexual selection, and the evolution of mating systems. Science 197:215–223

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1988) Phylogenies from molecular sequences—inference and reliability. Annu Rev Genet 22:521–565

    Article  PubMed  CAS  Google Scholar 

  • Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: a test and review of evidence. Am Nat 160:712–726

    Article  PubMed  CAS  Google Scholar 

  • French JA, Stribley JA (1987) Synchronization of ovarian cycles within and between social groups in golden lion tamarins (Leontopithecus rosalia). Am J Primatol 12:469–478

    Article  Google Scholar 

  • Fürtbauer I, Mundry R, Heistermann M, Schülke O, Ostner J (2011) You mate, I mate: macaque females synchronize sex not cycles. PLoS One 6:e26144

    Article  PubMed  Google Scholar 

  • Garland T Jr, Ives AR (2000) Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. Am Nat 155:346–364

    Article  Google Scholar 

  • Garland T Jr, Dickerman AW, Janis CM, Jones JA (1993) Phylogenetic analysis of covariance by computer simulation. Syst Biol 42:265–292

    Google Scholar 

  • Gerloff U, Hartung B, Fruth B, Hohmann G, Tautz D (1999) Intracommunity relationships, dispersal pattern and paternity success in a wild living community of bonobos (Pan paniscus) determined from DNA analysis of faecal samples. Proc R Soc B 266:1189–1195

    Article  PubMed  CAS  Google Scholar 

  • Hager R, Johnstone RA (2004) Infanticide and control of reproduction in cooperative and communal breeders. Anim Behav 67:941–949

    Article  Google Scholar 

  • Hager R, Jones C (2009) Reproductive skew in vertebrates: proximate and ultimate causes. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hendrickx AG, Dukelow WR (1995) Reproductive biology. In: Bennett BT, Abee CR, Hendrickson R (eds) Nonhuman primates in biomedical research. Academic, San Diego, pp 147–191

    Chapter  Google Scholar 

  • Hohmann G, Gerloff U, Tautz D, Fruth B (1999) Social bonds and genetic ties: kinship, association and affiliation in a community of bonobos (Pan paniscus). Behaviour 136:1219–1235

    Article  Google Scholar 

  • Huck M, Löttker P, Böhle UR, Heymann EW (2005) Paternity and kinship patterns in polyandrous moustached tamarins (Saguinus mystax). Am J Phys Anthropol 127:449–464

    Article  PubMed  Google Scholar 

  • Ims R (1988) Spatial clumping of sexually receptive females induces space sharing among male voles. Nature 335:541–543

    Article  PubMed  CAS  Google Scholar 

  • Inoue M, Mitsunaga F, Ohsawa H, Takenaka A, Sugiyama Y, Soumah A, Takenaka O (1992) Paternity discrimination by DNA fingerprinting and male mating behavior in an enclosed Japanese macaque group. In: Itoigawa N, Sugiyama Y, Sackett G (eds) Topics in primatology, vol II: behavior, ecology and conservation. University of Tokyo Press, Tokyo, pp 35–45

    Google Scholar 

  • Iossa G, Soulsbury CD, Baker PJ, Harris S (2008) Sperm competition and the evolution of testes size in terrestrial mammalian carnivores. Funct Ecol 22:655–662

    Article  Google Scholar 

  • Isvaran K, Clutton-Brock T (2007) Ecological correlates of extra-group paternity in mammals. Proc R Soc B 274:219–224

    Article  PubMed  Google Scholar 

  • Janson C, Verdolin J (2005) Seasonality of primate births in relation to climate. In: van Schaik CP, Brockman DK (eds) Seasonality in primates: studies of living and extinct human and non-human primates. Cambridge University Press, New York, pp 307–350

    Chapter  Google Scholar 

  • Johnstone RA (2000) Models of reproductive skew: a review and synthesis. Ethology 106:5–26

    Article  Google Scholar 

  • Johnstone RA, Cant MA (1999) Reproductive skew and the threat of eviction: a new perspective. Proc R Soc B 266:275–279

    Article  Google Scholar 

  • Jönsson KI (1997) Capital and income breeding as alternative tactics of resource use in reproduction. Oikos 78:57–66

    Article  Google Scholar 

  • Kappeler PM, van Schaik CP (2002) Evolution of primate social systems. Int J Primatol 23:707–740

    Article  Google Scholar 

  • Koenig A, Borries C, Chalise M, Winkler P (1997) Ecology, nutrition, and timing of reproductive events in an Asian primate, the Hanuman langur (Presbytis entellus). J Zool 243:215–235

    Article  Google Scholar 

  • Kokko H, Mackenzie A, Reynolds JD, Lindström J, Sutherland WJ (1999) Measures of inequality are not equal. Am Nat 154:358–382

    Article  PubMed  Google Scholar 

  • Kutsukake N, Nunn CL (2006) Comparative tests of reproductive skew in male primates: the roles of demographic factors and incomplete control. Behav Ecol Sociobiol 60:695–706

    Article  Google Scholar 

  • Launhardt K, Borries C, Hardt C, Epplen JT, Winkler P (2001) Paternity analysis of alternative male reproductive routes among the langurs (Semnopithecus entellus) of Ramnagar. Anim Behav 61:53–64

    Article  PubMed  Google Scholar 

  • Li J, Han K, Xing J, Kim H, Rogers J, Ryder O, Disotell T, Yue B, Batzer M (2009) Phylogeny of the macaques (Cercopithecidae: Macaca) based on Alu elements. Gene 448:242–249

    Article  PubMed  CAS  Google Scholar 

  • Lindburg DG (1987) Seasonality of reproduction in primates. In: Mitchell G, Erwin J (eds) Comparative primate biology, Vol 2, Part B: behavior cognition, and motivation. Alan R. Liss, New York, pp 167–218

    Google Scholar 

  • Mass V, Heistermann M, Kappeler PM (2009) Mate-guarding as a male reproductive tactic in Propithecus verreauxi. Int J Primatol 30:389–409

    Article  Google Scholar 

  • McClintock M (1971) Menstrual synchrony and suppression. Nature 229:244–245

    Article  PubMed  CAS  Google Scholar 

  • Mitani JC, Gros-Louis J, Manson JH (1996) Number of males in primate groups: comparative tests of competing hypotheses. Am J Primatol 38:315–332

    Article  Google Scholar 

  • Moscovice LR, Di Fiore A, Crockford C, Kitchen DM, Wittig R, Seyfarth RM, Cheney DL (2010) Hedging their bets? Male and female chacma baboons form friendships based on likelihood of paternity. Anim Behav 79:1007–1015

    Article  Google Scholar 

  • Nonacs P (2000) Measuring and using skew in the study of social behavior and evolution. Am Nat 156:577–589

    Article  Google Scholar 

  • Nonacs P (2003) Measuring the reliability of skew indices: is there one best index? Anim Behav 65:615–627

    Article  Google Scholar 

  • Nonacs P, Hager R (2011) The past, present and future of reproductive skew theory and experiments. Biol Rev 86:271–298

    Article  PubMed  Google Scholar 

  • Nunn CL (1999) The number of males in primate social groups: a comparative test of the socioecological model. Behav Ecol Sociobiol 46:1–13

    Article  Google Scholar 

  • Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Nick I (2011) Caper: comparative analyses of phylogenetics and evolution in R. R package version 0.4. Available from: http://CRAN.R-project.org/package=caper

  • Ostner J, Nunn CL, Schülke O (2008) Female reproductive synchrony predicts skewed paternity across primates. Behav Ecol 19:1150–1158

    Article  PubMed  Google Scholar 

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884

    Article  PubMed  CAS  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  PubMed  CAS  Google Scholar 

  • Paul A (1997) Breeding seasonality affects the association between dominance and reproductive success in non-human male primates. Folia Primatol 68:344–349

    Article  PubMed  CAS  Google Scholar 

  • Pereira ME (1991) Asynchrony within estrous synchrony among ringtailed lemurs (Primates: Lemuridae). Physiol Behav 49:47–52

    Article  PubMed  CAS  Google Scholar 

  • Pereira ME (1998) One male, two males, three males, more. Evol Anthropol 7:39–45

    Article  Google Scholar 

  • Pereira ME, Clutton-Brock TM, Kappeler PM (2000) Understanding male primates. In: Kappeler PM (ed) Primate males: causes and consequences of variation in group composition. Cambridge University Press, Cambridge, pp 271–277

    Google Scholar 

  • Port M, Kappeler PM (2010) The utility of reproductive skew models in the study of male primates, a critical evaluation. Evol Anthropol 19:46–56

    Article  Google Scholar 

  • Reeve HK, Emlen ST, Keller L (1998) Reproductive sharing in animal societies: reproductive incentives or incomplete control by dominant breeders? Behav Ecol 9:267–278

    Article  Google Scholar 

  • Ridley M (1986) The number of males in a primate troop. Anim Behav 34:1848–1858

    Article  Google Scholar 

  • Schwagmeyer PL, Ketterson ED (1999) Breeding synchrony and EPF rates: the key to a can of worms? Trends Ecol Evol 14:47–48

    Article  PubMed  Google Scholar 

  • Setchell JM (2008) Alternative reproductive tactics in primates. In: Oliveira RF, Taborsky M, HJ B (eds) Alternative reproductive tactics: an integrative approach. Cambridge University Press, New York, pp 373–398

    Chapter  Google Scholar 

  • Shen SF, Reeve HK (2010) Reproductive skew theory unified: the general bordered tug-of-war model. J Theor Biol 263:1–12

    Article  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. W. H, Freeman, New York

    Google Scholar 

  • Streiner DL (2002) Breaking up is hard to do: the heartbreak of dichotomizing continuous data. Can J Psychiatry 47:262–266

    PubMed  Google Scholar 

  • Strier KB, Chaves PB, Mendes SL, Fagundes V, Di Fiore A (2011) Low paternity skew and the influence of maternal kin in an egalitarian, patrilocal primate. Proc Natl Acad Sci USA 108:18915–18919

    Article  PubMed  CAS  Google Scholar 

  • Stutchbury BJ, Morton ES (1995) The effect of breeding synchrony on extra-pair mating systems in songbirds. Behaviour 132:675–690

    Article  Google Scholar 

  • Tosi AJ, Morales JC, Melnick DJ (2003) Paternal, maternal, and biparental molecular markers provide unique windows onto the evolutionary history of macaque monkeys. Evolution 57:1419–1435

    PubMed  CAS  Google Scholar 

  • van Horn RN (1975) Primate breeding season: photoperiodic regulation in captive Lemur catta. Folia Primatol 24:203–220

    Article  PubMed  Google Scholar 

  • van Noordwijk MA, van Schaik CP (2004) Sexual selection and the careers of primate males: paternity concentration, dominance-acquisition tactics and transfer decisions. In: Kappeler PM, van Schaik CP (eds) exual selection in primates: new and comparative perspectives.Cambridge. University Press, New York, pp 208–229

    Chapter  Google Scholar 

  • van Schaik CP, Kappeler PM (1997) Infanticide risk and the evolution of male–female association in primates. Proc R Soc B 264:1687–1694

    Article  PubMed  Google Scholar 

  • van Schaik CP, van Noordwijk MA (1985) Interannual variability in fruit abundance and the reproductive seasonality in Sumatran long-tailed macaques (Macaca fascicularis). J Zool 206:533–549

    Article  Google Scholar 

  • van Schaik CP, van Noordwijk MA, Nunn CL (1999) Sex and social evolution in primates. In: Lee PC (ed) Comparative primate socioecology. Cambridge University Press, Cambridge, pp 204–231

    Chapter  Google Scholar 

  • Vehrencamp SL (1979) The roles of individual, kin, and group selection in the evolution of sociality. In: Marler P, Vandenbergh JG (eds) Handbook of behavioral neurobiology: social behavior and communication. Plenum, New York, pp 351–394

    Google Scholar 

  • Vehrencamp SL (1983) Optimal degree of skew in cooperative societies. Am Zool 23:327–335

    Google Scholar 

  • Wallis J (1985) Synchrony of estrous swelling in captive group-living chimpanzees (Pan troglodytes). Int J Primatol 6:335–350

    Article  Google Scholar 

  • Weller A, Weller L (1993) Menstrual synchrony between mothers and daughters and between roommates. Physiol Behav 53:943–949

    Article  PubMed  CAS  Google Scholar 

  • Witt R, Schmidt C, Schmitt J (1981) Social rank and Darwinian fitness in a multimale group of barbary macaques (Macaca sylvana Linnaeus, 1758): dominance reversals and male reproductive success. Folia Primatol 36:201–211

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Carola Borries, Leone Brown, Diane Doran-Sheehy, James Herrera, and Charles Nunn as well as Peter Henzi and two anonymous reviewers for suggestions and discussions. We are especially grateful to Diane Doran-Sheehy who suggested checking for the influence of captivity. We are thankful to Wolfgang Dittus and Becca Lewis for their help with the data. For training in phylogenetic comparative methods, we thank the AnthroTree Workshop (supported by NSF BCS-0923791). While conducting this study, Jan F. Gogarten was supported by a Graduate Research Fellowship from the National Science Foundation (Grant number: DGE-1142336).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan F. Gogarten.

Additional information

Communicated by P. M. Kappeler

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 138 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gogarten, J.F., Koenig, A. Reproductive seasonality is a poor predictor of receptive synchrony and male reproductive skew among nonhuman primates. Behav Ecol Sociobiol 67, 123–134 (2013). https://doi.org/10.1007/s00265-012-1432-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-012-1432-2

Keywords

Navigation