Skip to main content

Advertisement

Log in

Stromal vascular stem cell treatment decreases muscle fibrosis following chronic rotator cuff tear

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Rotator cuff injuries are associated with atrophy and fat infiltration into the muscle, commonly referred to as “fatty degeneration.” As the poor function of chronically torn muscles may limit recovery after surgical repair, there is considerable interest in finding therapies to enhance muscle regeneration. Stromal vascular fraction stem cells (SVFCs) can improve muscle regeneration in other chronic injury states, and our objective was to evaluate the ability of SVFCs to reduce fibrosis and fat accumulation, and enhance muscle fibre specific force production after chronic rotator cuff tear.

Methods

Chronic supraspinatus tears were induced in adult immunodeficient rats, and repaired one month following tear. Rats received vehicle control, or injections of 3 × 105 or 3 × 106 human SVFCs into supraspinatus muscles.

Results

Two weeks following repair, we detected donor human DNA and protein in SVFC treated muscles. There was a 40 % reduction in fibrosis in the treated groups compared to controls (p = 0.03 for 3 × 105, p = 0.04 for 3 × 106), and no differences between groups for lipid content or force production were observed.

Conclusions

As there has been much interest in the use of stem cell-based therapies in musculoskeletal regenerative medicine, the reduction in fibrosis and trend towards an improvement in single fiber contractility suggest that SVFCs may be beneficial to enhance the treatment and recovery of patients with chronic rotator cuff tears.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Davis ME, Stafford PL, Jergenson MJ et al (2015) Muscle fibers are injured at the time of acute and chronic rotator cuff repair. Clin Orthop Relat Res 473:226–232. doi:10.1007/s11999-014-3860-y

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gladstone JN, Bishop JY, Lo IKY, Flatow EL (2007) Fatty infiltration and atrophy of the rotator cuff do not improve after rotator cuff repair and correlate with poor functional outcome. Am J Sports Med 35:719–728. doi:10.1177/0363546506297539

    Article  PubMed  Google Scholar 

  3. Ramaswamy KS, Palmer ML, van der Meulen JH et al (2011) Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats. J Physiol Lond 589:1195–1208. doi:10.1113/jphysiol.2010.201921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lieber RL, Ward SR (2013) Cellular mechanisms of tissue fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis. Am J Physiol Cell Physiol 305:C241–C252. doi:10.1152/ajpcell.00173.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Murray IR, Corselli M, Petrigliano FA et al (2014) Recent insights into the identity of mesenchymal stem cells: implications for orthopaedic applications. Bone Joint J 96-B:291–298. doi:10.1302/0301-620X.96B3.32789

    Article  CAS  PubMed  Google Scholar 

  6. Williams SK, Kosnik PE, Kleinert LB et al (2013) Adipose stromal vascular fraction cells isolated using an automated point of care system improve the patency of expanded polytetrafluoroethylene vascular grafts. Tissue Eng A 19:1295–1302. doi:10.1089/ten.tea.2012.0318

    Article  CAS  Google Scholar 

  7. Hwang JH, Kim IG, Piao S et al (2013) Combination therapy of human adipose-derived stem cells and basic fibroblast growth factor hydrogel in muscle regeneration. Biomaterials 34:6037–6045. doi:10.1016/j.biomaterials.2013.04.049

    Article  CAS  PubMed  Google Scholar 

  8. Gumucio J, Flood M, Harning J et al (2014) T lymphocytes are not required for the development of fatty degeneration after rotator cuff tear. Bone Joint Res 3:262–272. doi:10.1302/2046-3758.39.2000294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oak NR, Gumucio JP, Flood MD et al (2014) Inhibition of 5-LOX, COX-1, and COX-2 increases tendon healing and reduces muscle fibrosis and lipid accumulation after rotator cuff repair. Am J Sports Med 42(12):2860–2868. doi:10.1177/0363546514549943

    Article  PubMed  PubMed Central  Google Scholar 

  10. Doi K, Tanaka S, Iida H et al (2013) Stromal vascular fraction isolated from lipo-aspirates using an automated processing system: bench and bed analysis. J Tissue Eng Regen Med 7:864–870. doi:10.1002/term.1478

    Article  CAS  PubMed  Google Scholar 

  11. Williams SK, Kosnik PE, Kleinert LB et al (2013) Adipose stromal vascular fraction cells isolated using an automated point of care system improve the patency of expanded polytetrafluoroethylene vascular grafts. Tissue Eng A 19:1295–1302. doi:10.1089/ten.tea.2012.0318

    Article  CAS  Google Scholar 

  12. Becker M, Nitsche A, Neumann C et al (2002) Sensitive PCR method for the detection and real-time quantification of human cells in xenotransplantation systems. Br J Cancer 87:1328–1335. doi:10.1038/sj.bjc.6600573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Harn H-J, Lin S-Z, Hung S-H et al (2012) Adipose-derived stem cells can abrogate chemical-induced liver fibrosis and facilitate recovery of liver function. Cell Transplant 21:2753–2764. doi:10.3727/096368912X652959

    Article  PubMed  Google Scholar 

  14. Castiglione F, Hedlund P, Van der Aa F et al (2013) Intratunical injection of human adipose tissue–derived stem cells prevents fibrosis and is associated with improved erectile function in a rat model of Peyronie’s disease. Eur Urol 63:551–560. doi:10.1016/j.eururo.2012.09.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. LeBlanc AJ, Nguyen QT, Touroo JS et al (2013) Adipose-derived cell construct stabilizes heart function and increases microvascular perfusion in an established infarct. Stem Cells Transl Med 2:896–905. doi:10.5966/sctm.2013-0046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Verhoekx JSN, Mudera V, Walbeehm ET, Hovius SER (2013) Adipose-derived stem cells inhibit the contractile myofibroblast in Dupuytren’s disease. Plast Reconstr Surg 132:1139–1148. doi:10.1097/PRS.0b013e3182a3bf2b

    Article  CAS  PubMed  Google Scholar 

  17. Adutler-Lieber S, Ben-Mordechai T, Naftali-Shani N et al (2013) Human macrophage regulation via interaction with cardiac adipose tissue-derived mesenchymal stromal cells. J Cardiovasc Pharmacol Ther 18:78–86. doi:10.1177/1074248412453875

    Article  CAS  PubMed  Google Scholar 

  18. Oh JH, Chung SW, Kim SH et al (2014) 2013 Neer Award: effect of the adipose-derived stem cell for the improvement of fatty degeneration and rotator cuff healing in rabbit model. J Shoulder Elb Surg 23:445–455. doi:10.1016/j.jse.2013.07.054

    Article  Google Scholar 

  19. Rodriguez A-M, Pisani D, Dechesne CA et al (2005) Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J Exp Med 201:1397–1405. doi:10.1084/jem.20042224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu Y, Yan X, Sun Z et al (2007) Flk-1+ adipose-derived mesenchymal stem cells differentiate into skeletal muscle satellite cells and ameliorate muscular dystrophy in mdx mice. Stem Cells Dev 16:695–706. doi:10.1089/scd.2006.0118

    Article  CAS  PubMed  Google Scholar 

  21. Liu X, Manzano G, Kim HT, Feeley BT (2011) A rat model of massive rotator cuff tears. J Orthop Res 29:588–595. doi:10.1002/jor.21266

    Article  PubMed  Google Scholar 

  22. Soslowsky LJ, Carpenter JE, DeBano CM et al (1996) Development and use of an animal model for investigations on rotator cuff disease. J Shoulder Elb Surg 5:383–392

    Article  CAS  Google Scholar 

  23. Kim HM, Galatz LM, Lim C et al (2012) The effect of tear size and nerve injury on rotator cuff muscle fatty degeneration in a rodent animal model. J Shoulder Elb Surg 21:847–858. doi:10.1016/j.jse.2011.05.004

    Article  Google Scholar 

  24. Hernigou P, Flouzat Lachaniette CH, Delambre J et al (2014) Biologic augmentation of rotator cuff repair with mesenchymal stem cells during arthroscopy improves healing and prevents further tears: a case-controlled study. Int Orthop (SICOT) 38:1811–1818. doi:10.1007/s00264-014-2391-1

    Article  Google Scholar 

  25. Hernigou P (2015) Bone transplantation and tissue engineering, part IV. Mesenchymal stem cells: history in orthopedic surgery from Cohnheim and Goujon to the Nobel Prize of Yamanaka. Int Orthop (SICOT) 39:807–817. doi:10.1007/s00264-015-2716-8

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the US Army Medical Research and Materiel Command (DOD contract number W81XWH-10-2-0108) and NIH fellowships (F31-AR065931 and F32-AR067086).

Conflicts of interest

Paul E. Kosnik is an employee of Tissue Genesis, Inc., which received funding support from the Department of Defense for this study. The authors otherwise report no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the University of Michigan Institutional Review Board and with the 1964 Helsinki declaration and its later amendments. All procedures performed with animals were in accordance with the ethical standards of the University of Michigan Committee on the Use and Care of Animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher L. Mendias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gumucio, J.P., Flood, M.D., Roche, S.M. et al. Stromal vascular stem cell treatment decreases muscle fibrosis following chronic rotator cuff tear. International Orthopaedics (SICOT) 40, 759–764 (2016). https://doi.org/10.1007/s00264-015-2937-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-015-2937-x

Keywords

Navigation