Skip to main content

Advertisement

Log in

Massively recruited sTLR9+ neutrophils in rapidly formed nodules at the site of tumor cell inoculation and their contribution to a pro-tumor microenvironment

  • Research
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Neutrophils exert either pro- or anti-tumor activities. However, few studies have focused on neutrophils at the tumor initiation stage. In this study, we unexpectedly found a subcutaneous nodule in the groin areas of mice inoculated with tumor cells. The nodule was developed 24 h after the inoculation, filled with tumor cells and massively recruited neutrophils, being designated as tumor nodules. 22% of the neutrophils in tumor nodules are surface TLR9 (sTLR9) expressing neutrophils (sTLR9+ neutrophils). With tumor progression, sTLR9+ neutrophils were sustainably increased in tumor nodules/tumor tissues, reaching to 90.8% on day 13 after inoculation, with increased expression of IL-10 and decreased or no expression of TNFα. In vivo administration of CpG 5805 significantly reduced sTLR9 expression of the sTLR9+ neutrophils. The reduction of sTLR9 on neutrophils in tumor nodules contributed to the induction of an anti-tumor microenvironment conductive to the inhibition of tumor growth. Overall, the study provides insights for understanding the role of sTLR9+ neutrophils in the tumor development, especially in the early stage.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  2. Coussens LM, Zitvogel L, Palucka AK (2013) Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science 339:286–291. https://doi.org/10.1126/science.1232227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zha C, Meng X, Li L et al (2020) Neutrophil extracellular traps mediate the crosstalk between glioma progression and the tumor microenvironment via the HMGB1/RAGE/IL-8 axis. Cancer Biol Med 17:154–168. https://doi.org/10.20892/j.issn.2095-3941.2019.0353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xu W, Jiang X, Guan C, Gu M (2020) The prognostic and predictive value of tumor infiltrating Macrophage and Neutrophil in patient with clear cell renal cell carcinoma: Tumor infiltrating lymphocytes in renal cell carcinoma. Medicine (Baltimore) 99:e23181. https://doi.org/10.1097/MD.0000000000023181

    Article  CAS  PubMed  Google Scholar 

  5. Jensen TO, Schmidt H, Møller HJ et al (2012) Intratumoral neutrophils and plasmacytoid dendritic cells indicate poor prognosis and are associated with pSTAT3 expression in AJCC stage I/II melanoma. Cancer 118:2476–2485. https://doi.org/10.1002/cncr.26511

    Article  CAS  PubMed  Google Scholar 

  6. Li YW, Qiu SJ, Fan J et al (2011) Intratumoral neutrophils: a poor prognostic factor for hepatocellular carcinoma following resection. J Hepatol 54:497–505. https://doi.org/10.1016/j.jhep.2010.07.044

    Article  CAS  PubMed  Google Scholar 

  7. Rao HL, Chen JW, Li M et al (2012) Increased intratumoral neutrophil in colorectal carcinomas correlates closely with malignant phenotype and predicts patients’ adverse prognosis. PLoS ONE 7:e30806. https://doi.org/10.1371/journal.pone.0030806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nielsen SR, Strøbech JE, Horton ER et al (2021) Suppression of tumor-associated neutrophils by lorlatinib attenuates pancreatic cancer growth and improves treatment with immune checkpoint blockade. Nat Commun 12:3414. https://doi.org/10.1038/s41467-021-23731-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ferrari SM, Fallahi P, Galdiero MR et al (2019) Immune and inflammatory Cells in thyroid cancer microenvironment. Int J Mol Sci 20:4413. https://doi.org/10.3390/ijms20184413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fridlender ZG, Sun J, Kim S et al (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16:183–194. https://doi.org/10.1016/j.ccr.2009.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Powell DR, Huttenlocher A (2016) Neutrophils in the tumor microenvironment. Trends Immunol 37:41–52. https://doi.org/10.1016/j.it.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  12. Andzinski L, Kasnitz N, Stahnke S et al (2016) Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human. Int J Cancer 138:1982–1993. https://doi.org/10.1002/ijc.29945

    Article  CAS  PubMed  Google Scholar 

  13. Sionov RV (2021) Leveling up the controversial role of neutrophils in cancer: When the complexity becomes entangled. Cells 10:2486. https://doi.org/10.3390/cells10092486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mizuno R, Kawada K, Itatani Y et al (2019) The role of tumor-associated neutrophils in colorectal cancer. Int J Mol Sci 20:529. https://doi.org/10.3390/ijms20030529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shaul ME, Levy L, Sun J et al (2016) Tumor-associated neutrophils display a distinct N1 profile following TGF-β modulation: a transcriptomics analysis of pro- vs. antitumor TANs. Oncoimmunology 5:e1232221. https://doi.org/10.1080/2162402X.2016.1232221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. De Santo C, Arscott R, Booth S et al (2010) Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A. Nat Immunol 11:1039–1046. https://doi.org/10.1038/ni.1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang TT, Zhao YL, Peng LS et al (2017) Tumour-activated neutrophils in gastric cancer foster immune suppression and disease progression through GM-CSF-PD-L1 pathway. Gut 66:1900–1911. https://doi.org/10.1136/gutjnl-2016-313075

    Article  CAS  PubMed  Google Scholar 

  18. Lindau D, Mussard J, Wagner BJ et al (2013) Primary blood neutrophils express a functional cell surface Toll-like receptor 9. Eur J Immunol 43:2101–2113. https://doi.org/10.1002/eji.201142143

    Article  CAS  PubMed  Google Scholar 

  19. Miyake K, Onji M (2013) Endocytosis-free DNA sensing by cell surface TLR9 in neutrophils: rapid defense with autoimmune risks. Eur J Immunol 43:2006–2009. https://doi.org/10.1002/eji.201343882

    Article  CAS  PubMed  Google Scholar 

  20. Avalos AM, Kirak O, Oelkers JM et al (2013) Cell-specific TLR9 trafficking in primary APCs of transgenic TLR9-GFP mice. J Immunol 190:695–702. https://doi.org/10.4049/jimmunol.1202342

    Article  CAS  PubMed  Google Scholar 

  21. Fukui R, Saitoh S, Kanno A et al (2011) Unc93B1 restricts systemic lethal inflammation by orchestrating Toll-like receptor 7 and 9 trafficking. Immunity 35:69–81. https://doi.org/10.1016/j.immuni.2011.05.010

    Article  CAS  PubMed  Google Scholar 

  22. Marongiu L, Gornati L, Artuso I et al (2019) Below the surface: the inner lives of TLR4 and TLR9. J Leukoc Biol 106:147–160. https://doi.org/10.1002/JLB.3MIR1218-483RR

    Article  CAS  PubMed  Google Scholar 

  23. Kim YM, Brinkmann MM, Paquet ME et al (2008) UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes. Nature 452:234–238. https://doi.org/10.1038/nature06726

    Article  CAS  PubMed  Google Scholar 

  24. Pelka K, Bertheloot D, Reimer E et al (2018) The chaperone UNC93B1 regulates Toll-like receptor stability independently of endosomal TLR transport. Immunity 48:911-922.e7. https://doi.org/10.1016/j.immuni.2018.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tatematsu M, Funami K, Ishii N et al (2015) LRRC59 regulates trafficking of nucleic acid-sensing TLRs from the endoplasmic reticulum via association with UNC93B1. J Immunol 195:4933–4942. https://doi.org/10.4049/jimmunol.1501305

    Article  CAS  PubMed  Google Scholar 

  26. Lee BL, Moon JE, Shu JH et al (2013) UNC93B1 mediates differential trafficking of endosomal TLRs. Elife 2:e00291. https://doi.org/10.7554/eLife.00291

    Article  PubMed  PubMed Central  Google Scholar 

  27. Takaoka A, Yanai H, Kondo S et al (2005) Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 434:243–249. https://doi.org/10.1038/nature03308

    Article  CAS  PubMed  Google Scholar 

  28. Hervas-Stubbs S, Perez-Gracia JL, Rouzaut A et al (2011) Direct effects of type I interferons on cells of the immune system. Clin Cancer Res 17:2619–2627. https://doi.org/10.1158/1078-0432.CCR-10-1114

    Article  CAS  PubMed  Google Scholar 

  29. Sikora AG, Jaffarzad N, Hailemichael Y et al (2009) IFN-alpha enhances peptide vaccine-induced CD8+ T cell numbers, effector function, and antitumor activity. J Immunol 182:7398–7407. https://doi.org/10.4049/jimmunol.0802982

    Article  CAS  PubMed  Google Scholar 

  30. Piccard H, Muschel RJ, Opdenakker G (2012) On the dual roles and polarized phenotypes of neutrophils in tumor development and progression. Crit Rev Oncol Hematol 82:296–309. https://doi.org/10.1016/j.critrevonc.2011.06.004

    Article  CAS  PubMed  Google Scholar 

  31. Chen T, Goldstein JS, O’Boyle K et al (1999) ICAM-1 co-stimulation has differential effects on the activation of CD4+ and CD8+ T cells. Eur J Immunol 29:809–814. https://doi.org/10.1002/(SICI)1521-4141(199903)29:03%3c809::AID-IMMU809%3e3.0.CO;2-X

    Article  CAS  PubMed  Google Scholar 

  32. Lebedeva T, Dustin ML, Sykulev Y (2005) ICAM-1 co-stimulates target cells to facilitate antigen presentation. Curr Opin Immunol 17:251–258. https://doi.org/10.1016/j.coi.2005.04.008

    Article  CAS  PubMed  Google Scholar 

  33. Lu W, Cui C, Wang Y et al (2021) CpG ODN as an adjuvant arouses the vigor of B cells by relieving the negative regulation of surface TLR9 to enhance the antibody response to vaccine. Appl Microbiol Biotechnol 105:4213–4224. https://doi.org/10.1007/s00253-021-11316-9

    Article  CAS  PubMed  Google Scholar 

  34. Meng X, Sun W, Ren Y et al (2017) Protective role of surface Toll-like receptor 9 expressing neutrophils in local inflammation during systemic inflammatory response syndrome in mice. Mol Immunol 90:74–86. https://doi.org/10.1016/j.molimm.2017.07.003

    Article  CAS  PubMed  Google Scholar 

  35. Ren Y, Hua L, Meng X et al (2016) Correlation of surface Toll-like receptor 9 expression with IL-17 production in neutrophils during septic peritonitis in mice induced by E. coli. Mediat Inflamm 2016:3296307. https://doi.org/10.1155/2016/3296307

    Article  CAS  Google Scholar 

  36. Xiao Y, Lu W, Li X et al (2017) An oligodeoxynucleotide with AAAG repeats significantly attenuates burn-induced systemic inflammatory responses via inhibiting interferon regulatory factor 5 pathway. Mol Med 23:166–176. https://doi.org/10.2119/molmed.2016.00243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stangl S, Gehrmann M, Dressel R et al (2011) In vivo imaging of CT26 mouse tumours by using cmHsp70.1 monoclonal antibody. J Cell Mol Med 15:874–887. https://doi.org/10.1111/j.1582-4934.2010.01067.x

    Article  CAS  PubMed  Google Scholar 

  38. Zhang X, Sun W, Wu X et al (2014) An oligodeoxynucleotide with CCT repeats restrains CpG ODN-induced TLR9 trafficking. Curr Pharm Biotechnol 15(9):780–789. https://doi.org/10.2174/1389201015666141031114708

    Article  CAS  PubMed  Google Scholar 

  39. Connolly KA, Kuchroo M, Venkat A et al (2021) A reservoir of stem-like CD8+ T cells in the tumor-draining lymph node preserves the ongoing antitumor immune response. Sci Immunol 6:eabg7836. https://doi.org/10.1126/sciimmunol.abg7836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gregory AD, Houghton AM (2011) Tumor-associated neutrophils: new targets for cancer therapy. Cancer Res 71:2411–2416. https://doi.org/10.1158/0008-5472.CAN-10-2583

    Article  CAS  PubMed  Google Scholar 

  41. Dvorak HF, Orenstein NS, Carvalho AC et al (1979) Induction of a fibrin-gel investment: an early event in line 10 hepatocarcinoma growth mediated by tumor-secreted products. J Immunol 122:166–174

    Article  CAS  PubMed  Google Scholar 

  42. Ciano PS, Colvin RB, Dvorak AM et al (1986) Macrophage migration in fibrin gel matrices. Lab Invest 54:62–70

    CAS  PubMed  Google Scholar 

  43. Lazennec G, Richmond A (2010) Chemokines and chemokine receptors: new insights into cancer-related inflammation. Trends Mol Med 16:133–144. https://doi.org/10.1016/j.molmed.2010.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ueha S, Shand FH, Matsushima K (2011) Myeloid cell population dynamics in healthy and tumor-bearing mice. Int Immunopharmacol 11:783–788. https://doi.org/10.1016/j.intimp.2011.03.003

    Article  CAS  PubMed  Google Scholar 

  45. Mishalian I, Bayuh R, Eruslanov E et al (2014) Neutrophils recruit regulatory T-cells into tumors via secretion of CCL17—a new mechanism of impaired antitumor immunity. Int J Cancer 135:1178–1186. https://doi.org/10.1002/ijc.28770

    Article  CAS  PubMed  Google Scholar 

  46. Himmel ME, Crome SQ, Ivison S et al (2011) Human CD4+ FOXP3+ regulatory T cells produce CXCL8 and recruit neutrophils. Eur J Immunol 41:306–312. https://doi.org/10.1002/eji.201040459

    Article  CAS  PubMed  Google Scholar 

  47. Comen E, Wojnarowicz P, Seshan VE et al (2016) TNF is a key cytokine mediating neutrophil cytotoxic activity in breast cancer patients. NPJ Breast Cancer 2:16009. https://doi.org/10.1038/npjbcancer.2016.9

    Article  PubMed  PubMed Central  Google Scholar 

  48. Finisguerra V, Di Conza G, Di Matteo M et al (2015) MET is required for the recruitment of anti-tumoural neutrophils. Nature 522(7556):349–353. https://doi.org/10.1038/nature14407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Humbert M, Guery L, Brighouse D et al (2018) Intratumoral CpG-B promotes antitumoral neutrophil, cDC, and T-cell cooperation without reprograming tolerogenic pDC. Cancer Res 78(12):3280–3292. https://doi.org/10.1158/0008-5472.CAN-17-2549

    Article  CAS  PubMed  Google Scholar 

  50. Stoppacciaro A, Melani C, Parenza M et al (1993) Regression of an established tumor genetically modified to release granulocyte colony-stimulating factor requires granulocyte-T cell cooperation and T cell-produced interferon gamma. J Exp Med 178(1):151–161. https://doi.org/10.1084/jem.178.1.151

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Yunpeng Yao, Feiyu Lu, Yangeng Wang, Shujun Liu for technical assistance through the year. This study is financially supported by the National Natural Science Foundation of China (31670937).

Author information

Authors and Affiliations

Authors

Contributions

MK was the main researcher for this study including the experiment design and operation, data analysis, and manuscript writing; WL, MZ, and KQ participated in operation for some experiments including flow cytometry and mouse experiments. YY and LW provided research ideas, funds, and the writing and revising of the manuscript.

Corresponding authors

Correspondence to Liying Wang or Yongli Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2587 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kou, M., Lu, W., Zhu, M. et al. Massively recruited sTLR9+ neutrophils in rapidly formed nodules at the site of tumor cell inoculation and their contribution to a pro-tumor microenvironment. Cancer Immunol Immunother 72, 2671–2686 (2023). https://doi.org/10.1007/s00262-023-03451-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-023-03451-1

Keywords

Navigation