Skip to main content

Advertisement

Log in

MAIT cells numbers and frequencies in patients with acute myeloid leukemia at diagnosis: association with cytogenetic profile and gene mutations

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Harnessing or monitoring immune cells is actually a major topic in pre-clinical and clinical studies in acute myeloid leukemia (AML). Mucosal-Associated Invariant T cells (MAIT) constitute one of the largest subset of innate-like, cytotoxic T cell subsets in humans. Despite some papers suggesting a role for MAIT cells in cancer, their specific involvement remains unclear, especially in myeloid malignancies. This prospective monocentric study included 216 patients with a newly diagnosed AML. Circulating MAIT cells were quantified by flow cytometry at diagnosis and during intensive chemotherapy. We observed that circulating MAIT cells show a specific decline in AML patients at diagnosis compared to healthy donors. Post-induction monitored patients presented with a drastic drop in MAIT cell numbers, with recovery after one month. We also found correlation between decrease in MAIT cells number and adverse cytogenetic profile. FLT3-ITD and IDH ½ mutations were associated with higher MAIT cell numbers. Patients with high level of activated MAIT cells are under-represented within patients with a favorable cytogenetic profile, and over-represented among patients with IDH1 mutations or bi-allelic CEBPA mutations. We show for the first time that circulating MAIT cells are affected in newly diagnosed AML patients, suggesting a link between MAIT cells and AML progression. Our work fosters new studies to deepen our knowledge about the role of MAIT cells in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK et al (2010) Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 115(3):453–74

    PubMed  Google Scholar 

  2. Dombret H, Gardin C (2016) An update of current treatments for adult acute myeloid leukemia. Blood 127(1):53–61

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bleakley M, Riddell SR (2004) Molecules and mechanisms of the graft-versus-leukaemia effect. Nat Rev Cancer 4(5):371–380

    CAS  PubMed  Google Scholar 

  4. Anguille S, Van Tendeloo VF, Berneman ZN (2012) Leukemia-associated antigens and their relevance to the immunotherapy of acute myeloid leukemia. Leukemia 26(10):2186–96

    CAS  PubMed  Google Scholar 

  5. Gertner-Dardenne J, Castellano R, Mamessier E, Garbit S, Kochbati E, Etienne A et al (2012) Human Vgamma9Vdelta2 T cells specifically recognize and kill acute myeloid leukemic blasts. J Immunol 188(9):4701–8

    CAS  PubMed  Google Scholar 

  6. Lotzova E, Savary CA, Herberman RB (1987) Inhibition of clonogenic growth of fresh leukemia cells by unstimulated and IL-2 stimulated NK cells of normal donors. Leuk Res 11(12):1059–1066

    CAS  PubMed  Google Scholar 

  7. Lowdell MW, Craston R, Samuel D, Wood ME, O’Neill E, Saha V et al (2002) Evidence that continued remission in patients treated for acute leukaemia is dependent upon autologous natural killer cells. Br J Haematol 117(4):821–827

    CAS  PubMed  Google Scholar 

  8. Austin R, Smyth MJ, Lane SW (2016) Harnessing the immune system in acute myeloid leukaemia. Crit Rev Oncol Hematol 103:62–77

    PubMed  Google Scholar 

  9. Behl D, Porrata LF, Markovic SN, Letendre L, Pruthi RK, Hook CC et al (2006) Absolute lymphocyte count recovery after induction chemotherapy predicts superior survival in acute myelogenous leukemia. Leukemia 20(1):29–34

    CAS  PubMed  Google Scholar 

  10. Le Blanc K, Barrett AJ, Schaffer M, Hagglund H, Ljungman P, Ringden O et al (2009) Lymphocyte recovery is a major determinant of outcome after matched unrelated myeloablative transplantation for myelogenous malignancies. Biol Blood Marrow Transplant 15(9):1108–1115

    PubMed  PubMed Central  Google Scholar 

  11. Minculescu L, Marquart HV, Ryder LP, Andersen NS, Schjoedt I, Friis LS et al (2019) Improved overall survival, relapse-free-survival, and less graft-vs.-host-disease in patients with high immune reconstitution of tcr gamma delta cells 2 months after allogeneic stem cell transplantation. Front Immunol 10:1997

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Thoma MD, Huneke TJ, DeCook LJ, Johnson ND, Wiegand RA, Litzow MR et al (2012) Peripheral blood lymphocyte and monocyte recovery and survival in acute leukemia postmyeloablative allogeneic hematopoietic stem cell transplant. Biol Blood Marrow Transplant 18(4):600–7

    PubMed  Google Scholar 

  13. Tian DM, Wang Y, Zhang XH, Liu KY, Huang XJ, Chang YJ (2016) Rapid Recovery of CD3+CD8+ T cells on day 90 predicts superior survival after unmanipulated haploidentical blood and marrow transplantation. PLoS One. 11(6):e0156777

    PubMed  PubMed Central  Google Scholar 

  14. Sander FE, Rydstrom A, Bernson E, Kiffin R, Riise R, Aurelius J et al (2016) Dynamics of cytotoxic T cell subsets during immunotherapy predicts outcome in acute myeloid leukemia. Oncotarget 7(7):7586–96

    PubMed  PubMed Central  Google Scholar 

  15. Tang L, Wu J, Li CG, Jiang HW, Xu M, Du M et al (2020) Characterization of immune dysfunction and identification of prognostic immune-related risk factors in acute myeloid leukemia. Clin Cancer Res 26(7):1763–72

    CAS  PubMed  Google Scholar 

  16. Hinks TSC, Zhang XW (2020) MAIT cell activation and functions. Front Immunol 11:1014

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lepore M, Kalinichenko A, Colone A, Paleja B, Singhal A, Tschumi A et al (2014) Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCRbeta repertoire. Nat Commun 5:3866

    PubMed  Google Scholar 

  18. Tilloy F, Treiner E, Park SH, Garcia C, Lemonnier F, de la Salle H et al (1999) An invariant T cell receptor alpha chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted alpha/beta T cell subpopulation in mammals. J Exp Med 189(12):1907–1921

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Corbett AJ, Awad W, Wang H, Chen Z (2020) Antigen recognition by MR1-reactive T cells; MAIT cells, metabolites, and remaining mysteries. Front Immunol 11:1961

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L et al (2012) MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491(7426):717–23

    CAS  PubMed  Google Scholar 

  21. Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F et al (2003) Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422(6928):164–169

    CAS  PubMed  Google Scholar 

  22. Chen Z, Wang H, D’Souza C, Sun S, Kostenko L, Eckle SB et al (2016) Mucosal-associated invariant T-cell activation and accumulation after in vivo infection depends on microbial riboflavin synthesis and co-stimulatory signals. Mucosal Immunol 10(1):58–68

    PubMed  Google Scholar 

  23. Leng T, Akther HD, Hackstein CP, Powell K, King T, Friedrich M et al (2019) TCR and inflammatory signals tune human MAIT cells to exert specific tissue repair and effector functions. Cell Rep 28(12):3077–91 e5

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Pavlovic M, Gross C, Chili C, Secher T, Treiner E (2020) MAIT cells display a specific response to type 1 IFN underlying the adjuvant effect of TLR7/8 ligands. Front Immunol 11:2097

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ling L, Lin Y, Zheng W, Hong S, Tang X, Zhao P et al (2016) Circulating and tumor-infiltrating mucosal associated invariant T (MAIT) cells in colorectal cancer patients. Sci Rep 6:20358

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sundstrom P, Ahlmanner F, Akeus P, Sundquist M, Alsen S, Yrlid U et al (2015) Human Mucosa-Associated invariant T cells accumulate in colon adenocarcinomas but produce reduced amounts of IFN-gamma. J Immunol 195(7):3472–81

    PubMed  Google Scholar 

  27. Zabijak L, Attencourt C, Guignant C, Chatelain D, Marcelo P, Marolleau JP et al (2015) Increased tumor infiltration by mucosal-associated invariant T cells correlates with poor survival in colorectal cancer patients. Cancer Immunol Immunother 64(12):1601–8

    CAS  PubMed  Google Scholar 

  28. Duan M, Goswami S, Shi JY, Wu LJ, Wang XY, Ma JQ et al (2019) Activated and exhausted MAIT cells foster disease progression and indicate poor outcome in hepatocellular carcinoma. Clin Cancer Res 25(11):3304–16

    PubMed  Google Scholar 

  29. Huang WC, Hsiao YC, Wu CC, Hsu YT, Chang CL (2019) Less circulating mucosal-associated invariant T cells in patients with cervical cancer. Taiwan J Obstet Gynecol 58(1):117–21

    PubMed  Google Scholar 

  30. Lu Z, Zhu M, Marley JL, Bi K, Wang K, Zhai M et al (2021) The combined action of monocytic myeloid-derived suppressor cells and mucosal-associated invariant T cells promotes the progression of cervical cancer. Int J Cancer 148(6):1499–1507. https://doi.org/10.1002/ijc.33411

    Article  CAS  PubMed  Google Scholar 

  31. Melo AM, O’Brien AM, Phelan JJ, Kennedy SA, Wood NAW, Veerapen N et al (2019) Mucosal-associated invariant T cells display diminished effector capacity in oesophageal adenocarcinoma. Front Immunol 10:1580

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Won EJ, Ju JK, Cho YN, Jin HM, Park KJ, Kim TJ et al (2016) Clinical relevance of circulating mucosal-associated invariant T cell levels and their anti-cancer activity in patients with mucosal-associated cancer. Oncotarget 7(46):76274–90

    PubMed  PubMed Central  Google Scholar 

  33. Sundstrom P, Szeponik L, Ahlmanner F, Sundquist M, Wong JSB, Lindskog EB et al (2019) Tumor-infiltrating mucosal-associated invariant T (MAIT) cells retain expression of cytotoxic effector molecules. Oncotarget 10(29):2810–23

    PubMed  PubMed Central  Google Scholar 

  34. Yan J, Allen S, McDonald E, Das I, Mak JYW, Liu L et al (2020) MAIT cells promote tumor initiation, growth, and metastases via tumor MR1. Cancer Discov 10(1):124–41

    CAS  PubMed  Google Scholar 

  35. Haeryfar SMM, Shaler CR, Rudak PT (2018) Mucosa-associated invariant T cells in malignancies: a faithful friend or formidable foe? Cancer Immunol Immunother 67(12):1885–96

    CAS  PubMed  Google Scholar 

  36. Gherardin NA, Loh L, Admojo L, Davenport AJ, Richardson K, Rogers A et al (2018) Enumeration, functional responses and cytotoxic capacity of MAIT cells in newly diagnosed and relapsed multiple myeloma. Sci Rep 8(1):4159

    PubMed  PubMed Central  Google Scholar 

  37. Kawaguchi K, Umeda K, Hiejima E, Iwai A, Mikami M, Nodomi S et al (2018) Influence of post-transplant mucosal-associated invariant T cell recovery on the development of acute graft-versus-host disease in allogeneic bone marrow transplantation. Int J Hematol 108(1):66–75

    PubMed  Google Scholar 

  38. Solders M, Erkers T, Gorchs L, Poiret T, Remberger M, Magalhaes I et al (2017) Mucosal-associated invariant T cells display a poor reconstitution and altered phenotype after allogeneic hematopoietic stem cell transplantation. Front Immunol 8:1861

    PubMed  PubMed Central  Google Scholar 

  39. Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH et al (2010) Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 116(3):354–365

    CAS  PubMed  Google Scholar 

  40. Bertoli S, Tavitian S, Huynh A, Borel C, Guenounou S, Luquet I et al (2017) Improved outcome for AML patients over the years 2000–2014. Blood Cancer J 7(12):635

    PubMed  PubMed Central  Google Scholar 

  41. Bories P, Bertoli S, Berard E, Laurent J, Duchayne E, Sarry A et al (2014) Intensive chemotherapy, azacitidine, or supportive care in older acute myeloid leukemia patients: an analysis from a regional healthcare network. Am J Hematol 89(12):E244-52

    CAS  PubMed  Google Scholar 

  42. Pigneux A, Bene MC, Salmi LR, Dumas PY, Delaunay J, Bonmati C et al (2018) Improved survival by adding lomustine to conventional chemotherapy for elderly patients with AML without unfavorable cytogenetics: results of the LAM-SA 2007 FILO trial. J Clin Oncol 36(32):3203–10

    CAS  PubMed  Google Scholar 

  43. Dohner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Buchner T et al (2017) Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 129(4):424–47

    PubMed  PubMed Central  Google Scholar 

  44. Dusseaux M, Martin E, Serriari N, Peguillet I, Premel V, Louis D et al (2011) Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 117(4):1250–9

    CAS  PubMed  Google Scholar 

  45. Wouters BJ, Lowenberg B, Erpelinck-Verschueren CA, van Putten WL, Valk PJ, Delwel R (2009) Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood 113(13):3088–3091

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Knaus HA, Berglund S, Hackl H, Blackford AL, Zeidner JF, Montiel-Esparza R et al (2018) Signatures of CD8+ T cell dysfunction in AML patients and their reversibility with response to chemotherapy. JCI Insight 3(21):e120974. https://doi.org/10.1172/jci.insight.120974

    Article  PubMed Central  Google Scholar 

  47. Kong Y, Zhang J, Claxton DF, Ehmann WC, Rybka WB, Zhu L et al (2015) PD-1(hi)TIM-3(+) T cells associate with and predict leukemia relapse in AML patients post allogeneic stem cell transplantation. Blood Cancer J 5:e330

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Le Dieu R, Taussig DC, Ramsay AG, Mitter R, Miraki-Moud F, Fatah R et al (2009) Peripheral blood T cells in acute myeloid leukemia (AML) patients at diagnosis have abnormal phenotype and genotype and form defective immune synapses with AML blasts. Blood 114(18):3909–3916

    PubMed  PubMed Central  Google Scholar 

  49. Li Z, Philip M, Ferrell PB (2020) Alterations of T-cell-mediated immunity in acute myeloid leukemia. Oncogene 39(18):3611–9

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Shenghui Z, Yixiang H, Jianbo W, Kang Y, Laixi B, Yan Z et al (2011) Elevated frequencies of CD4(+) CD25(+) CD127lo regulatory T cells is associated to poor prognosis in patients with acute myeloid leukemia. Int J Cancer 129(6):1373–81

    PubMed  Google Scholar 

  51. Williams P, Basu S, Garcia-Manero G, Hourigan CS, Oetjen KA, Cortes JE et al (2018) The distribution of T-cell subsets and the expression of immune checkpoint receptors and ligands in patients with newly diagnosed and relapsed acute myeloid leukemia. Cancer 125(9):1470–81

    PubMed  Google Scholar 

  52. Wu C, Wang S, Wang F, Chen Q, Peng S, Zhang Y et al (2009) Increased frequencies of T helper type 17 cells in the peripheral blood of patients with acute myeloid leukaemia. Clin Exp Immunol 158(2):199–204

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Mendez LM, Posey RR, Pandolfi pp. (2019) The interplay between the genetic and immune landscapes of AML: mechanisms and implications for risk stratification and therapy. Front Oncol 9:1162

    PubMed  PubMed Central  Google Scholar 

  54. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA et al (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17(3):225–34

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kats LM, Reschke M, Taulli R, Pozdnyakova O, Burgess K, Bhargava P et al (2014) Proto-oncogenic role of mutant IDH2 in leukemia initiation and maintenance. Cell Stem Cell 14(3):329–41

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kohanbash G, Carrera DA, Shrivastav S, Ahn BJ, Jahan N, Mazor T et al (2017) Isocitrate dehydrogenase mutations suppress STAT1 and CD8+ T cell accumulation in gliomas. J Clin Invest 127(4):1425–37

    PubMed  PubMed Central  Google Scholar 

  57. Bottcher M, Renner K, Berger R, Mentz K, Thomas S, Cardenas-Conejo ZE et al (2018) D-2-hydroxyglutarate interferes with HIF-1alpha stability skewing T-cell metabolism towards oxidative phosphorylation and impairing Th17 polarization. Oncoimmunology 7(7):e1445454

    PubMed  PubMed Central  Google Scholar 

  58. Bunse L, Pusch S, Bunse T, Sahm F, Sanghvi K, Friedrich M et al (2018) Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nat Med 24(8):1192–203

    CAS  PubMed  Google Scholar 

  59. Amankulor NM, Kim Y, Arora S, Kargl J, Szulzewsky F, Hanke M et al (2017) Mutant IDH1 regulates the tumor-associated immune system in gliomas. Genes Dev 31(8):774–86

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lemonnier F, Cairns RA, Inoue S, Li WY, Dupuy A, Broutin S et al (2016) The IDH2 R172K mutation associated with angioimmunoblastic T-cell lymphoma produces 2HG in T cells and impacts lymphoid development. Proc Natl Acad Sci U S A 113(52):15084–9

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ben Youssef G, Tourret M, Salou M, Ghazarian L, Houdouin V, Mondot S et al (2018) Ontogeny of human mucosal-associated invariant T cells and related T cell subsets. J Exp Med 215(2):459–79

    PubMed  PubMed Central  Google Scholar 

  62. Bhattacharyya A, Hanafi LA, Sheih A, Golob JL, Srinivasan S, Boeckh MJ et al (2018) Graft-derived reconstitution of mucosal-associated invariant T cells after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 24(2):242–51

    CAS  PubMed  Google Scholar 

  63. Swarbrick GM, Gela A, Cansler ME, Null MD, Duncan RB, Nemes E et al (2020) Postnatal expansion, maturation, and functionality of MR1T cells in humans. Front Immunol 11:556695

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Dekker L, de Koning C, Lindemans C, Nierkens S (2020) Reconstitution of T cell subsets following allogeneic hematopoietic cell transplantation. Cancers (Basel) 12(7):1974. https://doi.org/10.3390/cancers12071974

    Article  CAS  Google Scholar 

  65. Novak J, Dobrovolny J, Brozova J, Novakova L, Kozak T (2015) Recovery of mucosal-associated invariant T cells after myeloablative chemotherapy and autologous peripheral blood stem cell transplantation. Clin Exp Med 16(4):529–37

    PubMed  Google Scholar 

  66. Fagnoni FF, Lozza L, Zibera C, Zambelli A, Ponchio L, Gibelli N et al (2002) T-cell dynamics after high-dose chemotherapy in adults: elucidation of the elusive CD8+ subset reveals multiple homeostatic T-cell compartments with distinct implications for immune competence. Immunology 106(1):27–37

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lin SJ, Chen AT, Welsh RM (2008) Immune system derived from homeostatic proliferation generates normal CD8 T-cell memory but altered repertoires and diminished heterologous immune responses. Blood 112(3):680–689

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Velardi E, Tsai JJ, van den Brink MRM (2021) T cell regeneration after immunological injury. Nat Rev Immunol 21(5):277–291. https://doi.org/10.1038/s41577-020-00457-z

    Article  CAS  PubMed  Google Scholar 

  69. Novak J, Dobrovolny J, Novakova L, Kozak T (2014) The decrease in number and change in phenotype of mucosal-associated invariant T cells in the elderly and differences in men and women of reproductive age. Scand J Immunol 80(4):271–5

    CAS  PubMed  Google Scholar 

  70. Gerart S, Siberil S, Martin E, Lenoir C, Aguilar C, Picard C et al (2013) Human iNKT and MAIT cells exhibit a PLZF-dependent proapoptotic propensity that is counterbalanced by XIAP. Blood 121(4):614–23

    CAS  PubMed  Google Scholar 

  71. Chen P, Deng W, Li D, Zeng T, Huang L, Wang Q et al (2019) Circulating mucosal-associated invariant T cells in a large cohort of healthy Chinese individuals from newborn to elderly. Front Immunol 10:260

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded in part by a research grant from the Ligue Nationale contre le Cancer- comité midi-pyrénées.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Treiner.

Ethics declarations

Conflict of interest

T.C received honoraria and/or research or educational support from AbbVie, AstraZeneca, Bristol Myers Squibb (Celgene), Novartis and Takeda. S.B. has served on advisory boards for Daiichi-Sankyo, Astellas, Sanofi, and Jazz Pharmaceuticals. CR received research grants (my institution) by Abbvie, Amgen, Novartis, Celgene, Jazz Pharma, Agios, Daiichi-Sankyo, Astellas, Roche, MaatPharma; and has served on advisory boards for Abbvie, Janssen, Jazz Pharma, Daiichi-Sankyo, Astellas, Novartis, Celgene, Takeda, Roche, Otsuka, Macrogenics, Pfizer. F.V received research support from Pierre-Fabre. Other authors declare that they have no conflict of interest.

Ethical approval

Blood samples from healthy donors were obtained through a convention between the Etablissement Français du Sang (EFS)—Midi-Pyrénées and the University Hospital of Toulouse. Patients with AML gave their written consent to participate in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Precis Circulating MAIT cells at diagnosis of AML are significantly decreased, with signs of activation. MAIT cells numbers are affected by the cytogenetic profile and the mutational status of patients, suggestive of an association with disease progression.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comont, T., Nicolau-Travers, ML., Bertoli, S. et al. MAIT cells numbers and frequencies in patients with acute myeloid leukemia at diagnosis: association with cytogenetic profile and gene mutations. Cancer Immunol Immunother 71, 875–887 (2022). https://doi.org/10.1007/s00262-021-03037-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-021-03037-9

Keywords

Navigation