Skip to main content

Advertisement

Log in

Differential immune microenvironmental features of microsatellite-unstable colorectal cancers according to Fusobacterium nucleatum status

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

It has been suggested that Fusobacterium nucleatum (Fn) may differentially impact tumor immune responses according to microsatellite instability (MSI) status in colorectal cancers (CRCs). We aimed to reveal the detailed relationship between intratumoral Fn and immune microenvironmental features in MSI-high CRCs. A total of 126 MSI-high CRCs were subjected to analyses for intratumoral Fn DNA load using quantitative PCR and for densities of tumor-infiltrating immune cells, including CD3+ T cells, CD4+ T cells, CD8+ T cells, FoxP3+ T cells, CD68+ macrophages, CD163+ macrophages, and CD177+ neutrophils, at invasive margin (IM) and center of tumor (CT) areas using computational image analysis of immunohistochemistry. Based on the Fn load, the 126 MSI-high CRCs were classified into Fn-high, -low, and -negative subgroups. The Fn-high subset of MSI-high CRCs was significantly correlated with larger tumor size and advanced invasion depth (p = 0.017 and p = 0.034, respectively). Compared with the Fn-low/negative subgroup, Fn-high tumors demonstrated significantly lower density of FoxP3+ cells in both IM and CT areas (p = 0.002 and p = 0.003, respectively). Additionally, Fn-high was significantly associated with elevated CD163+ cell to CD68+ cell ratio in only CT areas of MSI-high CRCs (p = 0.028). In conclusion, the Fn-enriched subset of MSI-high CRCs is characterized by increased tumor growth and invasion and distinct immune microenvironmental features, including decreased FoxP3+ T cells throughout the tumor and increased proportion of M2-polarized macrophages in the tumor center. These findings collectively support that Fn may be linked to pro-tumoral immune responses in MSI-high CRCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data and/or code availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Abbreviations

CRC:

Colorectal cancer

CIMP:

CpG island methylator phenotype

CT:

Center of tumor

DFS:

Disease-free survival

FFPE:

Formalin-fixed, paraffin-embedded

Fn :

Fusobacterium nucleatum

ICI:

Immune checkpoint inhibitor

IHC:

Immunohistochemistry

IM:

Invasive margin

MSI:

Microsatellite instability

OS:

Overall survival

qPCR:

Quantitative polymerase chain reaction

Th:

Helper T cell

TIIC:

Tumor-infiltrating immune cell

TIL:

Tumor-infiltrating lymphocyte

TLS:

Tertiary lymphoid structure

TMA:

Tissue microarray

Treg:

Regulatory T cell

References

  1. Wieczorska K, Stolarek M, Stec R (2019) The role of the gut microbiome in colorectal cancer: where are we? Where are we going? Clin Colorectal Cancer. https://doi.org/10.1016/j.clcc.2019.07.006

    Article  PubMed  Google Scholar 

  2. Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12:661–672. https://doi.org/10.1038/nrmicro3344

    Article  CAS  PubMed  Google Scholar 

  3. Brennan CA, Garrett WS (2019) Fusobacterium nucleatum—symbiont, opportunist and oncobacterium. Nat Rev Microbiol 17:156–166. https://doi.org/10.1038/s41579-018-0129-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW (2013) Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe 14:195–206. https://doi.org/10.1016/j.chom.2013.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M et al (2013) Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14:207–215. https://doi.org/10.1016/j.chom.2013.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nosho K, Sukawa Y, Adachi Y, Ito M, Mitsuhashi K, Kurihara H et al (2016) Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer. World J Gastroenterol 22:557–566. https://doi.org/10.3748/wjg.v22.i2.557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen T, Li Q, Wu J, Wu Y, Peng W, Li H et al (2018) Fusobacterium nucleatum promotes M2 polarization of macrophages in the microenvironment of colorectal tumours via a TLR4-dependent mechanism. Cancer Immunol Immunother 67:1635–1646. https://doi.org/10.1007/s00262-018-2233-x

    Article  CAS  PubMed  Google Scholar 

  8. Mima K, Sukawa Y, Nishihara R, Qian ZR, Yamauchi M, Inamura K et al (2015) Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol 1:653–661. https://doi.org/10.1001/jamaoncol.2015.1377

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hamada T, Zhang X, Mima K, Bullman S, Sukawa Y, Nowak JA et al (2018) Fusobacterium nucleatum in colorectal cancer relates to immune response differentially by tumor microsatellite instability status. Cancer Immunol Res 6:1327–1336. https://doi.org/10.1158/2326-6066.CIR-18-0174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW et al (1998) A National Cancer Institute Workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58:5248–5257

    CAS  PubMed  Google Scholar 

  11. Ueno H, Hashiguchi Y, Shimazaki H, Shinto E, Kajiwara Y, Nakanishi K et al (2013) Objective criteria for crohn-like lymphoid reaction in colorectal cancer. Am J Clin Pathol 139:434–441. https://doi.org/10.1309/AJCPWHUEFTGBWKE4

    Article  CAS  PubMed  Google Scholar 

  12. Kim JH, Kim KJ, Bae JM, Rhee YY, Cho NY, Lee HS et al (2015) Comparative validation of assessment criteria for Crohn-like lymphoid reaction in colorectal carcinoma. J Clin Pathol 68:22–28. https://doi.org/10.1136/jclinpath-2014-202603

    Article  PubMed  Google Scholar 

  13. Pages F, Mlecnik B, Marliot F, Bindea G, Ou S, Bifulco C et al (2018) International validation of the consensus immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391:2128–2139. https://doi.org/10.1016/S0140-6736(18)30789-X

    Article  PubMed  Google Scholar 

  14. Bankhead P, Loughrey MB, Fernandez JA, Dombrowski Y, McArt DG, Dunne PD et al (2017) QuPath: open source software for digital pathology image analysis. Sci Rep 7:16878. https://doi.org/10.1038/s41598-017-17204-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Loughrey MB, Bankhead P, Coleman HG, Hagan RS, Craig S, McCorry AMB et al (2018) Validation of the systematic scoring of immunohistochemically stained tumour tissue microarrays using QuPath digital image analysis. Histopathology 73:327–338. https://doi.org/10.1111/his.13516

    Article  PubMed  Google Scholar 

  16. Hendry S, Salgado R, Gevaert T, Russell PA, John T, Thapa B et al (2017) Assessing tumor-infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the International Immuno-Oncology Biomarkers Working Group: Part 2: TILs in melanoma, gastrointestinal tract carcinomas, non-small cell lung carcinoma and mesothelioma, endometrial and ovarian carcinomas, squamous cell carcinoma of the head and neck, genitourinary carcinomas, and primary brain tumors. Adv Anat Pathol 24:311–335. https://doi.org/10.1097/PAP.0000000000000161

    Article  PubMed  PubMed Central  Google Scholar 

  17. Oh HJ, Kim JH, Bae JM, Kim HJ, Cho NY, Kang GH (2019) Prognostic impact of Fusobacterium nucleatum depends on combined tumor location and microsatellite instability status in stage II/III colorectal cancers treated with adjuvant chemotherapy. J Pathol Transl Med 53:40–49. https://doi.org/10.4132/jptm.2018.11.29

    Article  PubMed  Google Scholar 

  18. Park HE, Kim JH, Cho NY, Lee HS, Kang GH (2017) Intratumoral Fusobacterium nucleatum abundance correlates with macrophage infiltration and CDKN2A methylation in microsatellite-unstable colorectal carcinoma. Virchows Arch 471:329–336. https://doi.org/10.1007/s00428-017-2171-6

    Article  CAS  PubMed  Google Scholar 

  19. Leishman SJ, Ford PJ, Do HL, Palmer JE, Heng NC, West MJ et al (2012) Periodontal pathogen load and increased antibody response to heat shock protein 60 in patients with cardiovascular disease. J Clin Periodontol 39:923–930. https://doi.org/10.1111/j.1600-051X.2012.01934.x

    Article  CAS  PubMed  Google Scholar 

  20. Bae JM, Kim JH, Oh HJ, Park HE, Lee TH, Cho NY et al (2017) Downregulation of acetyl-CoA synthetase 2 is a metabolic hallmark of tumor progression and aggressiveness in colorectal carcinoma. Mod Pathol 30:267–277. https://doi.org/10.1038/modpathol.2016.172

    Article  CAS  PubMed  Google Scholar 

  21. Mima K, Nishihara R, Qian ZR, Cao Y, Sukawa Y, Nowak JA et al (2016) Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 65:1973–1980. https://doi.org/10.1136/gutjnl-2015-310101

    Article  CAS  PubMed  Google Scholar 

  22. Yu T, Guo F, Yu Y, Sun T, Ma D, Han J et al (2017) Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 170(548–563):e516. https://doi.org/10.1016/j.cell.2017.07.008

    Article  CAS  Google Scholar 

  23. Geller LT, Barzily-Rokni M, Danino T, Jonas OH, Shental N, Nejman D et al (2017) Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 357:1156–1160. https://doi.org/10.1126/science.aah5043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yamaoka Y, Suehiro Y, Hashimoto S, Hoshida T, Fujimoto M, Watanabe M et al (2018) Fusobacterium nucleatum as a prognostic marker of colorectal cancer in a Japanese population. J Gastroenterol 53:517–524. https://doi.org/10.1007/s00535-017-1382-6

    Article  CAS  PubMed  Google Scholar 

  25. Takeuchi Y, Nishikawa H (2016) Roles of regulatory T cells in cancer immunity. Int Immunol 28:401–409. https://doi.org/10.1093/intimm/dxw025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ladoire S, Martin F, Ghiringhelli F (2011) Prognostic role of FOXP3 + regulatory T cells infiltrating human carcinomas: the paradox of colorectal cancer. Cancer Immunol Immunother 60:909–918. https://doi.org/10.1007/s00262-011-1046-y

    Article  CAS  PubMed  Google Scholar 

  27. Xu P, Fan W, Zhang Z, Wang J, Wang P, Li Y et al (2017) The clinicopathological and prognostic implications of FoxP3(+) regulatory T cells in patients with colorectal cancer: a meta-analysis. Front Physiol 8:950. https://doi.org/10.3389/fphys.2017.00950

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shang B, Liu Y, Jiang SJ, Liu Y (2015) Prognostic value of tumor-infiltrating FoxP3 + regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep 5:15179. https://doi.org/10.1038/srep15179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhuo C, Xu Y, Ying M, Li Q, Huang L, Li D et al (2015) FOXP3 + Tregs: heterogeneous phenotypes and conflicting impacts on survival outcomes in patients with colorectal cancer. Immunol Res 61:338–347. https://doi.org/10.1007/s12026-014-8616-y

    Article  CAS  PubMed  Google Scholar 

  30. Saito T, Nishikawa H, Wada H, Nagano Y, Sugiyama D, Atarashi K et al (2016) Two FOXP3(+)CD4(+) T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat Med 22:679–684. https://doi.org/10.1038/nm.4086

    Article  CAS  PubMed  Google Scholar 

  31. Omenetti S, Pizarro TT (2015) The Treg/Th17 axis: a dynamic balance regulated by the gut microbiome. Front Immunol 6:639. https://doi.org/10.3389/fimmu.2015.00639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ward-Hartstonge KA, Kemp RA (2017) Regulatory T-cell heterogeneity and the cancer immune response. Clin Transl Immunol 6:e154. https://doi.org/10.1038/cti.2017.43

    Article  CAS  Google Scholar 

  33. Wang Q, Feng M, Yu T, Liu X, Zhang P (2014) Intratumoral regulatory T cells are associated with suppression of colorectal carcinoma metastasis after resection through overcoming IL-17 producing T cells. Cell Immunol 287:100–105. https://doi.org/10.1016/j.cellimm.2014.01.002

    Article  CAS  PubMed  Google Scholar 

  34. Bullman S, Pedamallu CS, Sicinska E, Clancy TE, Zhang X, Cai D et al (2017) Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 358:1443–1448. https://doi.org/10.1126/science.aal5240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Borroni EM, Qehajaj D, Farina FM, Yiu D, Bresalier RS, Chiriva-Internati M et al (2019) Fusobacterium nucleatum and the immune system in colorectal cancer. Curr Colorectal Canc R 15:149–156. https://doi.org/10.1007/s11888-019-00442-2

    Article  Google Scholar 

  36. Yamamura K, Baba Y, Nakagawa S, Mima K, Miyake K, Nakamura K, Sawayama H, Kinoshita K, Ishimoto T, Iwatsuki M, Sakamoto Y, Yamashita Y, Yoshida N, Watanabe M, Baba H (2016) Human microbiome Fusobacterium nucleatum in esophageal cancer tissue is associated with prognosis. Clin Cancer Res 22:5574–5581. https://doi.org/10.1158/1078-0432.Ccr-16-1786

    Article  CAS  PubMed  Google Scholar 

  37. Gurjao C, Liu D, Hofree M, AlDubayan SH, Wakiro I, Su MJ, Felt K, Gjini E, Brais LK, Rotem A, Rosenthal MH, Rozenblatt-Rosen O, Rodig S, Ng K, Van Allen EM, Corsello SM, Ogino S, Regev A, Nowak JA, Giannakis M (2019) Intrinsic resistance to immune checkpoint blockade in a mismatch repair-deficient colorectal cancer. Cancer Immunol Res 7:1230–1236. https://doi.org/10.1158/2326-6066.CIR-18-0683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea funded by the Korea government (Ministry of Science and ICT) under Grants NRF-2016R1C1B2010627 and NRF-2019R1F1A1059535. The biospecimens for this study were partly provided by the Seoul National University Hospital Cancer Tissue Bank (SNUH CTB). All samples derived from the SNUH CTB were obtained with informed consent under institutional review board-approved protocols. We also thank those who have developed and shared QuPath, an open-source software for digital pathology analysis.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: JHK; Formal analysis: JAL, SYY, SJ, NYC, JHK; Funding acquisition: JHK; Investigation: JAL, SYY, JHK; Methodology: JAL, SYY, HJO, SJ, NYC, JHK; Project administration: GHK, JHK; Resources: JAL, HJO; Supervision: GHK, JHK; Validation: JAL, SYY, JHK; Visualization: JAL, SYY, JHK; Writing—original draft: JAL, SYY, JHK; Writing—review & editing: GHK, JHK.

Corresponding author

Correspondence to Jung Ho Kim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This study was approved by the institutional review board of Seoul National University Hospital (IRB No. 1805-018-944). This study was performed in accordance with the Declaration of Helsinki.

Informed consent

All patients were provided written consent for the research or molecular diagnostic use of residual tumor tissues obtained during their surgical treatment.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.A., Yoo, SY., Oh, H.J. et al. Differential immune microenvironmental features of microsatellite-unstable colorectal cancers according to Fusobacterium nucleatum status. Cancer Immunol Immunother 70, 47–59 (2021). https://doi.org/10.1007/s00262-020-02657-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02657-x

Keywords

Navigation