Skip to main content
Log in

Expression profiles and function of IL6 in polymorphonuclear myeloid-derived suppressor cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

IL6 is an inflammatory cytokine with pleiotropic functions in both immune and nonimmune cells, and its expression level is inversely correlated with disease prognosis in patients with cancer. However, blocking IL6 alone has only yielded minimal efficacy in human cancer patients. We aimed at defining IL6 expression profiles under inflammatory conditions and cancer, and elucidating the mechanism underlying IL6 intrinsic signaling in colon carcinoma. We report here that colonic inflammation induces IL6 expression primarily in the CD11b+Ly6G+Ly6Clo polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) in colon. Although both tumor cells, T cells and myeloid cells all express IL6, PMN-MDSCs are the primary cell type that express IL6 in colon carcinoma, suggesting that IL6 up-regulation is a response to inflammation in colon epithelium and tumor microenvironment. Furthermore, we determined that IL6 activates STAT3 to up-regulate DNMT1 and DNMT3b expression in colon tumor cells, thereby revealing an epigenetic mechanism that mediates the IL6-STAT3 signaling pathway in colon carcinoma. Surprisingly, knocking out IL6 in colon tumor cells did not significantly alter tumor growth in WT mice. Conversely, IL6-sufficient colon and pancreatic tumor grow at similar rate in WT and IL6-deficient mice. However, overexpression of IL6 in colon tumor cells significantly increases tumor growth in vivo. Our findings determine that a high tumor local IL6 threshold is essential for IL6 function in colon tumor promotion and targeting the IL6-expressing PMN-MDSCs is potentially an effective approach to suppress colon tumor growth in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Grivennikov S, Karin E, Terzic J et al (2009) IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15:103–113. https://doi.org/10.1016/j.ccr.2009.01.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Tsukamoto H, Fujieda K, Miyashita A et al (2018) Combined blockade of IL6 and PD-1/PD-L1 signaling abrogates mutual regulation of their immunosuppressive effects in the tumor microenvironment. Can Res 78:5011–5022. https://doi.org/10.1158/0008-5472.Can-18-0118

    Article  CAS  Google Scholar 

  3. Tsukamoto H, Fujieda K, Hirayama M et al (2017) Soluble IL6R expressed by myeloid cells reduces tumor-specific Th1 differentiation and drives tumor progression. Cancer Res 77:2279–2291. https://doi.org/10.1158/0008-5472.CAN-16-2446

    Article  PubMed  CAS  Google Scholar 

  4. Li ZW, Sun B, Gong T et al (2019) GNAI1 and GNAI3 reduce colitis-associated tumorigenesis in mice by blocking IL6 signaling and down-regulating expression of GNAI2. Gastroenterology 156:2297–2312. https://doi.org/10.1053/j.gastro.2019.02.040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Xu Z, Li L, Qian Y et al (2019) Upregulation of IL-6 in CUL4B-deficient myeloid-derived suppressive cells increases the aggressiveness of cancer cells. Oncogene 38:5860–5872. https://doi.org/10.1038/s41388-019-0847-x

    Article  PubMed  CAS  Google Scholar 

  6. Diehl S, Anguita J, Hoffmeyer A, Zapton T, Ihle JN, Fikrig E, Rincon M (2000) Inhibition of Th1 differentiation by IL-6 is mediated by SOCS1. Immunity 13:805–815. https://doi.org/10.1016/S1074-7613(00)00078-9

    Article  PubMed  CAS  Google Scholar 

  7. Wueest S, Laesser CI, Boni-Schnetzler M, Item F, Lucchini FC, Borsigova M, Muller W, Donath MY, Konrad D (2018) IL-6-type cytokine signaling in adipocytes induces intestinal GLP-1 secretion. Diabetes 67:36–45. https://doi.org/10.2337/db17-0637

    Article  PubMed  CAS  Google Scholar 

  8. Becker C, Fantini MC, Wirtz S, Nikolaev A, Lehr HA, Galle PR, Rose-John S, Neurath MF (2005) IL-6 signaling promotes tumor growth in colorectal cancer. Cell Cycle 4:217–220

    Article  CAS  Google Scholar 

  9. Kang S, Tanaka T, Narazaki M, Kishimoto T (2019) Targeting interleukin-6 signaling in clinic. Immunity 50:1007–1023. https://doi.org/10.1016/j.immuni.2019.03.026

    Article  PubMed  CAS  Google Scholar 

  10. Mihara M, Hashizume M, Yoshida H, Suzuki M, Shiina M (2012) IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clin Sci (Lond) 122:143–159. https://doi.org/10.1042/CS20110340

    Article  CAS  Google Scholar 

  11. Niemand C, Nimmesgern A, Haan S, Fischer P, Schaper F, Rossaint R, Heinrich PC, Muller-Newen G (2003) Activation of STAT3 by IL-6 and IL-10 in primary human macrophages is differentially modulated by suppressor of cytokine signaling 3. J Immunol 170:3263–3272. https://doi.org/10.4049/jimmunol.170.6.3263

    Article  PubMed  CAS  Google Scholar 

  12. Ara T, Nakata R, Sheard MA et al (2013) Critical role of STAT3 in IL-6-mediated drug resistance in human neuroblastoma. Cancer Res 73:3852–3864. https://doi.org/10.1158/0008-5472.CAN-12-2353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Wang L, Walia B, Evans J, Gewirtz AT, Merlin D, Sitaraman SV (2003) IL-6 induces NF-kappa B activation in the intestinal epithelia. J Immunol 171:3194–3201. https://doi.org/10.4049/jimmunol.171.6.3194

    Article  PubMed  CAS  Google Scholar 

  14. Lesina M, Kurkowski MU, Ludes K et al (2011) Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell 19:456–469. https://doi.org/10.1016/j.ccr.2011.03.009

    Article  PubMed  CAS  Google Scholar 

  15. Rose-John S (2017) The soluble interleukin 6 receptor: advanced therapeutic options in inflammation. Clin Pharmacol Ther 102:591–598. https://doi.org/10.1002/cpt.782

    Article  PubMed  CAS  Google Scholar 

  16. Park EJ, Lee JH, Yu GY, He G, Ali SR, Holzer RG, Osterreicher CH, Takahashi H, Karin M (2010) Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140:197–208. https://doi.org/10.1016/j.cell.2009.12.052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Knupfer H, Preiss R (2010) Serum interleukin-6 levels in colorectal cancer patients—a summary of published results. Int J Colorectal Dis 25:135–140. https://doi.org/10.1007/s00384-009-0818-8

    Article  PubMed  Google Scholar 

  18. Lamano JB, Lamano JB, Li YD et al (2019) Glioblastoma-derived IL6 induces immunosuppressive peripheral myeloid cell PD-L1 and promotes tumor growth. Clin Cancer Res 25:3643–3657. https://doi.org/10.1158/1078-0432.CCR-18-2402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Karakasheva TA, Lin EW, Tang Q et al (2018) IL-6 mediates cross-talk between tumor cells and activated fibroblasts in the tumor microenvironment. Cancer Res 78:4957–4970. https://doi.org/10.1158/0008-5472.CAN-17-2268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Tang M, Diao J, Gu H, Khatri I, Zhao J, Cattral MS (2015) Toll-like receptor 2 activation promotes tumor dendritic cell dysfunction by regulating IL-6 and IL-10 receptor signaling. Cell Rep 13:2851–2864. https://doi.org/10.1016/j.celrep.2015.11.053

    Article  PubMed  CAS  Google Scholar 

  21. Tsukamoto H, Nishikata R, Senju S, Nishimura Y (2013) Myeloid-derived suppressor cells attenuate TH1 development through IL-6 production to promote tumor progression. Cancer Immunol Res 1:64–76. https://doi.org/10.1158/2326-6066.CIR-13-0030

    Article  PubMed  CAS  Google Scholar 

  22. Becker C, Fantini MC, Schramm C et al (2004) TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity 21:491–501. https://doi.org/10.1016/j.immuni.2004.07.020

    Article  PubMed  CAS  Google Scholar 

  23. Mace TA, Shakya R, Pitarresi JR et al (2018) IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer. Gut 67:320–332. https://doi.org/10.1136/gutjnl-2016-311585

    Article  PubMed  CAS  Google Scholar 

  24. Rossi JF, Negrier S, James ND et al (2010) A phase I/II study of siltuximab (CNTO 328), an anti-interleukin-6 monoclonal antibody, in metastatic renal cell cancer. Br J Cancer 103:1154–1162. https://doi.org/10.1038/sj.bjc.6605872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Dijkgraaf EM, Santegoets SJ, Reyners AK et al (2015) A phase I trial combining carboplatin/doxorubicin with tocilizumab, an anti-IL-6R monoclonal antibody, and interferon-alpha2b in patients with recurrent epithelial ovarian cancer. Ann Oncol 26:2141–2149. https://doi.org/10.1093/annonc/mdv309

    Article  PubMed  CAS  Google Scholar 

  26. Lu C, Redd PS, Lee JR, Savage N, Liu K (2016) The expression profiles and regulation of PD-L1 in tumor-induced myeloid-derived suppressor cells. Oncoimmunology 5:e1247135. https://doi.org/10.1080/2162402X.2016.1247135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Ibrahim ML, Klement JD, Lu C et al (2018) Myeloid-Derived Suppressor Cells Produce IL-10 to Elicit DNMT3b-Dependent IRF8 Silencing to Promote Colitis-Associated Colon Tumorigenesis. Cell Rep 25(3036–46):e6. https://doi.org/10.1016/j.celrep.2018.11.050

    Article  CAS  Google Scholar 

  28. Zhang Q, Wang HY, Marzec M, Raghunath PN, Nagasawa T, Wasik MA (2005) STAT3- and DNA methyltransferase 1-mediated epigenetic silencing of SHP-1 tyrosine phosphatase tumor suppressor gene in malignant T. lymphocytes. Proc Natl Acad Sci USA 102:6948–6953

    Article  CAS  Google Scholar 

  29. Mace TA, Ameen Z, Collins A et al (2013) Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner. Cancer Res 73:3007–3018. https://doi.org/10.1158/0008-5472.CAN-12-4601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Orillion A, Hashimoto A, Damayanti N et al (2017) Entinostat neutralizes myeloid-derived suppressor cells and enhances the antitumor effect of PD-1 inhibition in murine models of lung and renal cell carcinoma. Clin Cancer Res 23:5187–5201. https://doi.org/10.1158/1078-0432.CCR-17-0741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Marigo I, Bosio E, Solito S et al (2010) Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity 32:790–802. https://doi.org/10.1016/j.immuni.2010.05.010

    Article  PubMed  CAS  Google Scholar 

  32. Kuhn KA, Schulz HM, Regner EH et al (2018) Bacteroidales recruit IL-6-producing intraepithelial lymphocytes in the colon to promote barrier integrity. Mucosal Immunol 11:357–368. https://doi.org/10.1038/mi.2017.55

    Article  PubMed  CAS  Google Scholar 

  33. Yao D, Dong M, Dai C, Wu S (2019) Inflammation and inflammatory cytokine contribute to the initiation and development of ulcerative colitis and its associated cancer. Inflamm Bowel Dis. https://doi.org/10.1093/ibd/izz149

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chen MF, Chen PT, Lu MS, Lin PY, Chen WC, Lee KD (2013) IL-6 expression predicts treatment response and outcome in squamous cell carcinoma of the esophagus. Mol Cancer 12:26. https://doi.org/10.1186/1476-4598-12-26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Jinno T, Kawano S, Maruse Y et al (2015) Increased expression of interleukin-6 predicts poor response to chemoradiotherapy and unfavorable prognosis in oral squamous cell carcinoma. Oncol Rep 33:2161–2168. https://doi.org/10.3892/or.2015.3838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Gao J, Zhao S, Halstensen TS (2016) Increased interleukin-6 expression is associated with poor prognosis and acquired cisplatin resistance in head and neck squamous cell carcinoma. Oncol Rep 35:3265–3274. https://doi.org/10.3892/or.2016.4765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Johnson DE, O’Keefe RA, Grandis JR (2018) Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol 15:234–248. https://doi.org/10.1038/nrclinonc.2018.8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, Kagnoff MF, Karin M (2004) IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118:285–296

    Article  CAS  Google Scholar 

  39. Llosa NJ, Cruise M, Tam A et al (2015) The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov 5:43–51. https://doi.org/10.1158/2159-8290.CD-14-0863

    Article  PubMed  CAS  Google Scholar 

  40. Fang X, Hong Y, Dai L, Qian Y, Zhu C, Wu B, Li S (2017) CRH promotes human colon cancer cell proliferation via IL-6/JAK2/STAT3 signaling pathway and VEGF-induced tumor angiogenesis. Mol Carcinog 56:2434–2445. https://doi.org/10.1002/mc.22691

    Article  PubMed  CAS  Google Scholar 

  41. Wei N, Li J, Fang C, Chang J, Xirou V, Syrigos NK, Marks BJ, Chu E, Schmitz JC (2019) Targeting colon cancer with the novel STAT3 inhibitor bruceantinol. Oncogene 38:1676–1687. https://doi.org/10.1038/s41388-018-0547-y

    Article  PubMed  CAS  Google Scholar 

  42. Tu B, Du L, Fan QM, Tang Z, Tang TT (2012) STAT3 activation by IL-6 from mesenchymal stem cells promotes the proliferation and metastasis of osteosarcoma. Cancer Lett 325:80–88. https://doi.org/10.1016/j.canlet.2012.06.006

    Article  PubMed  CAS  Google Scholar 

  43. Jeffery V, Goldson AJ, Dainty JR, Chieppa M, Sobolewski A (2017) IL-6 signaling regulates small intestinal crypt homeostasis. J Immunol 199:304–311. https://doi.org/10.4049/jimmunol.1600960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Liu CC, Lin JH, Hsu TW, Su K, Li AF, Hsu HS, Hung SC (2015) IL-6 enriched lung cancer stem-like cell population by inhibition of cell cycle regulators via DNMT1 upregulation. Int J Cancer 136:547–559. https://doi.org/10.1002/ijc.29033

    Article  PubMed  CAS  Google Scholar 

  45. Chong PSY, Zhou J, Lim JSL et al (2019) Interleukin-6 promotes a STAT3-PRL3 feedforward loop via SHP2 repression in multiple myeloma. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-19-0343

    Article  PubMed  Google Scholar 

  46. De Simone V, Franze E, Ronchetti G et al (2015) Th17-type cytokines, IL-6 and TNF-alpha synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene 34:3493–3503. https://doi.org/10.1038/onc.2014.286

    Article  PubMed  CAS  Google Scholar 

  47. Rajabi H, Tagde A, Alam M, Bouillez A, Pitroda S, Suzuki Y, Kufe D (2016) DNA methylation by DNMT1 and DNMT3b methyltransferases is driven by the MUC1-C oncoprotein in human carcinoma cells. Oncogene 35:6439–6445. https://doi.org/10.1038/onc.2016.180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Hu X, Bardhan K, Paschall AV et al (2013) Deregulation of apoptotic factors Bcl-xL and Bax confers apoptotic resistance to myeloid-derived suppressor cells and contributes to their persistence in cancer. J Biol Chem 288:19103–19115. https://doi.org/10.1074/jbc.m112.434530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Cancer Institute (CA133085 and CA227433, to KL) and US Veterans Affairs Merit Review Award (CX001364, to KL).

Author information

Authors and Affiliations

Authors

Contributions

MLI, CL, JDK, PSR, DY and ADS contributed to concept and experimental design, data acquisition, and analysis of results. MLI and KL contributed to study design and writing the manuscript. All authors provided approval of the manuscript.

Corresponding author

Correspondence to Kebin Liu.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Ethical approval and ethical standards

No human subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 482 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, M.L., Lu, C., Klement, J.D. et al. Expression profiles and function of IL6 in polymorphonuclear myeloid-derived suppressor cells. Cancer Immunol Immunother 69, 2233–2245 (2020). https://doi.org/10.1007/s00262-020-02620-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02620-w

Keywords

Navigation