Skip to main content

Advertisement

Log in

CD200 is overexpressed in neuroblastoma and regulates tumor immune microenvironment

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Patients with pediatric cancers such as neuroblastoma (NB) are often unresponsive to checkpoint blockade immunotherapy. One major factor in pediatric tumor resistance to immunotherapy is considered to be the low mutation rate of pediatric tumors. Another factor may be the overexpression of additional inhibitory pathways. While analyzing the RNA-sequencing database TARGET, we found that human NB tumors overexpress immune checkpoint molecule CD200. To determine its significance and impact on tumor immune microenvironment, we analyzed 49 cases of previously untreated, surgically removed NB tumors using immunohistochemistry and multi-color flow cytometry (FACS). We found that CD200 is overexpressed in more than 90% of NB tumors. In the tumor microenvironment of NB, CD200 is mainly overexpressed in CD45 NB tumor cells, while its cognate receptor (CD200R) is mainly expressed in HLA-DR+CD14+ myeloid cells and CD11c+ dendritic cells. Low-level expression of CD200R is also observed in tumor-infiltrating CD4+ and CD8+ T cells. In NB tumors with higher CD200 expression (CD200high), we observed lower numbers of HLA-DR+CD14+ myeloid cells and less tumor-infiltrating CD4+ and CD8+ T cells. Moreover, we found that CD4+ and CD8+ T cells produced less IFN-γ and/or TNF-α in CD200high NB tumors. Thus, CD200–CD200R pathway appears to downregulate anti-tumor immunity in the tumor microenvironment of NB tumors, and blockade of this pathway may be beneficial for NB patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACC:

Adrenocortical carcinoma

AML:

Acute myeloid leukemia

ATCC:

American Type Culture Collection

BSA:

Bovine serum albumin

CD200R:

CD200 receptor

CLL:

Chronic lymphocytic leukemia

DC:

Dendritic cell

EMEM:

Eagle's Minimum Essential Medium

FBS:

Fetal bovine serum

FPKM:

Fragments Per Kilobase of transcript per Million fragments mapped

HB:

Hepatoblastoma

IgSF:

Immunoglobulin superfamily

IHC:

Immunohistochemistry

INSS:

International Neuroblastoma Staging System

MDSC:

Myeloid-derived suppressor cell

MFI:

Mean fluorescence intensity

NB:

Neuroblastoma

pDC:

Plasmacytoid dendritic cell

RS:

Rhabdomyosarcoma

TADC:

Tumor-associated dendritic cell

TAM:

Tumor-associated macrophage

TAMC:

Tumor-associated myeloid cell

TARGET:

Therapeutically Applicable Research to Generate Effective Treatments

TIL:

Tumor-infiltrating lymphocyte

TME:

Tumor microenvironment

Treg:

Regulatory T cell

WT:

Wilms tumor

References

  1. Park JA, Cheung NV (2017) Limitations and opportunities for immune checkpoint inhibitors in pediatric malignancies. Cancer Treat Rev 58:22–33

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Wedekind MF, Denton NL, Chen CY, Cripe TP (2018) Pediatric cancer immunotherapy: opportunities and challenges. Paediatr Drugs 20:395–408

    PubMed  PubMed Central  Google Scholar 

  3. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, Mermel CH, Roberts SA, Kiezun A, Hammerman PS, McKenna A, Drier Y, Zou L, Ramos AH, Pugh TJ, Stransky N, Helman E, Kim J, Sougnez C, Ambrogio L, Nickerson E, Shefler E, Cortes ML, Auclair D, Saksena G, Voet D, Noble M, DiCara D, Lin P, Lichtenstein L, Heiman DI, Fennell T, Imielinski M, Hernandez B, Hodis E, Baca S, Dulak AM, Lohr J, Landau DA, Wu CJ, Melendez-Zajgla J, Hidalgo-Miranda A, Koren A, McCarroll SA, Mora J, Crompton B, Onofrio R, Parkin M, Winckler W, Ardlie K, Gabriel SB, Roberts CWM, Biegel JA, Stegmaier K, Bass AJ, Garraway LA, Meyerson M, Golub TR, Gordenin DA, Sunyaev S, Lander ES, Getz G (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–218

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Hont AB, Cruz CR, Ulrey R, O'Brien B, Stanojevic M, Datar A, Albihani S, Saunders D, Hanajiri R, Panchapakesan K, Darko S, Banerjee P, Fortiz MF, Hoq F, Lang H, Wang Y, Hanley PJ, Dome JS, Bollard CM, Meany HJ (2019) Immunotherapy of relapsed and refractory solid tumors with ex vivo expanded multi-tumor associated antigen specific cytotoxic T lymphocytes: a phase I study. J Clin Oncol 37:2349–2359

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Mina M, Boldrini R, Citti A, Romania P, D'Alicandro V, De Ioris M, Castellano A, Furlanello C, Locatelli F, Fruci D (2015) Tumor-infiltrating T lymphocytes improve clinical outcome of therapy-resistant neuroblastoma. Oncoimmunology 4:e1019981

    PubMed  PubMed Central  Google Scholar 

  6. Zhu H, Gu S, Yin M, Shi M, Xin C, Zhu J, Wang J, Huang S, Xie C, Ma J, Pan C, Tang J, Xu M, Bai XF (2018) Analysis of infantile fibrosarcoma reveals extensive T-cell responses within tumors: implications for immunotherapy. Pediatr Blood Cancer 65:e26813

    Google Scholar 

  7. Koning N, Swaab DF, Hoek RM, Huitinga I (2009) Distribution of the immune inhibitory molecules CD200 and CD200R in the normal central nervous system and multiple sclerosis lesions suggests neuron–glia and glia–glia interactions. J Neuropathol Exp Neurol 68:159–167

    PubMed  CAS  Google Scholar 

  8. Ragheb R, Abrahams S, Beecroft R, Hu J, Ni J, Ramakrishna V, Yu G, Gorczynski RM (1999) Preparation and functional properties of monoclonal antibodies to human, mouse and rat OX-2. Immunol Lett 68:311–315

    PubMed  CAS  Google Scholar 

  9. Dick AD, Broderick C, Forrester JV, Wright GJ (2001) Distribution of OX2 antigen and OX2 receptor within retina. Investig Ophthalmol Vis Sci 42:170–176

    CAS  Google Scholar 

  10. Rosenblum MD, Olasz EB, Yancey KB, Woodliff JE, Lazarova Z, Gerber KA, Truitt RL (2004) Expression of CD200 on epithelial cells of the murine hair follicle: a role in tissue-specific immune tolerance? J Investig Dermatol 123:880–887

    PubMed  CAS  Google Scholar 

  11. Wright GJ, Jones M, Puklavec MJ, Brown MH, Barclay AN (2001) The unusual distribution of the neuronal/lymphoid cell surface CD200 (OX2) glycoprotein is conserved in humans. Immunology 102:173–179

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Barclay AN, Wright GJ, Brooke G, Brown MH (2002) CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol 23:285–290

    PubMed  CAS  Google Scholar 

  13. Wright GJ, Cherwinski H, Foster-Cuevas M, Brooke G, Puklavec MJ, Bigler M, Song Y, Jenmalm M, Gorman D, McClanahan T, Liu MR, Brown MH, Sedgwick JD, Phillips JH, Barclay AN (2003) Characterization of the CD200 receptor family in mice and humans and their interactions with CD200. J Immunol 171:3034–3046

    PubMed  CAS  Google Scholar 

  14. Jenmalm MC, Cherwinski H, Bowman EP, Phillips JH, Sedgwick JD (2006) Regulation of myeloid cell function through the CD200 receptor. J Immunol 176:191–199

    PubMed  CAS  Google Scholar 

  15. Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM, Blom B, Homola ME, Streit WJ, Brown MH, Barclay AN, Sedgwick JD (2000) Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290:1768–1771

    PubMed  CAS  Google Scholar 

  16. Snelgrove RJ, Goulding J, Didierlaurent AM, Lyonga D, Vekaria S, Edwards L, Gwyer E, Sedgwick JD, Barclay AN, Hussell T (2008) A critical function for CD200 in lung immune homeostasis and the severity of influenza infection. Nat Immunol 9:1074–1083

    PubMed  CAS  Google Scholar 

  17. Rijkers ES, de Ruiter T, Baridi A, Veninga H, Hoek RM, Meyaard L (2008) The inhibitory CD200R is differentially expressed on human and mouse T and B lymphocytes. Mol Immunol 45:1126–1135

    PubMed  CAS  Google Scholar 

  18. Rygiel TP, Meyaard L (2012) CD200R signaling in tumor tolerance and inflammation: a tricky balance. Curr Opin Immunol 24:233–238

    PubMed  CAS  Google Scholar 

  19. Petermann KB, Rozenberg GI, Zedek D, Groben P, McKinnon K, Buehler C, Kim WY, Shields JM, Penland S, Bear JE, Thomas NE, Serody JS, Sharpless NE (2007) CD200 is induced by ERK and is a potential therapeutic target in melanoma. J Clin Investig 117:3922–3929

    PubMed  CAS  Google Scholar 

  20. Moreaux J, Veyrune JL, Reme T, De Vos J, Klein B (2008) CD200: a putative therapeutic target in cancer. Biochem Biophys Res Commun 366:117–122

    PubMed  CAS  Google Scholar 

  21. Tonks A, Hills R, White P, Rosie B, Mills KI, Burnett AK, Darley RL (2007) CD200 as a prognostic factor in acute myeloid leukaemia. Leukemia 21:566–568

    PubMed  CAS  Google Scholar 

  22. Moreaux J, Hose D, Reme T, Jourdan E, Hundemer M, Legouffe E, Moine P, Bourin P, Moos M, Corre J, Mohler T, De Vos J, Rossi JF, Goldschmidt H, Klein B (2006) CD200 is a new prognostic factor in multiple myeloma. Blood 108:4194–4197

    PubMed  CAS  Google Scholar 

  23. Love JE, Thompson K, Kilgore MR, Westerhoff M, Murphy CE, Papanicolau-Sengos A, McCormick KA, Shankaran V, Vandeven N, Miller F, Blom A, Nghiem PT, Kussick SJ (2017) CD200 expression in neuroendocrine neoplasms. Am J Clin Pathol 148:236–242

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Wang L, Liu JQ, Talebian F, El-Omrani HY, Khattabi M, Yu L, Bai XF (2010) Tumor expression of CD200 inhibits IL-10 production by tumor-associated myeloid cells and prevents tumor immune evasion of CTL therapy. Eur J Immunol 40:2569–2579

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Talebian F, Liu JQ, Liu Z, Khattabi M, He Y, Ganju R, Bai XF (2012) Melanoma cell expression of CD200 inhibits tumor formation and lung metastasis via inhibition of myeloid cell functions. PLoS ONE 7:e31442

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Liu JQ, Talebian F, Wu L, Liu Z, Li MS, Wu L, Zhu J, Markowitz J, Carson WE 3rd, Basu S, Bai XF (2016) A critical role for cd200r signaling in limiting the growth and metastasis of CD200+ melanoma. J Immunol 197:1489–1497

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Mahadevan D, Lanasa MC, Farber C, Pandey M, Whelden M, Faas SJ, Ulery T, Kukreja A, Li L, Bedrosian CL, Zhang X, Heffner LT (2019) Phase I study of samalizumab in chronic lymphocytic leukemia and multiple myeloma: blockade of the immune checkpoint CD200. J Immunother Cancer 7:227

    PubMed  PubMed Central  Google Scholar 

  28. Moertel CL, Xia J, LaRue R, Waldron NN, Andersen BM, Prins RM, Okada H, Donson AM, Foreman NK, Hunt MA, Pennell CA, Olin MR (2014) CD200 in CNS tumor-induced immunosuppression: the role for CD200 pathway blockade in targeted immunotherapy. J Immunother Cancer 2:46

    PubMed  PubMed Central  Google Scholar 

  29. Siva A, Xin H, Qin F, Oltean D, Bowdish KS, Kretz-Rommel A (2008) Immune modulation by melanoma and ovarian tumor cells through expression of the immunosuppressive molecule CD200. Cancer Immunol Immunother 57:987–996

    PubMed  CAS  Google Scholar 

  30. Alapat D, Coviello-Malle J, Owens R, Qu P, Barlogie B, Shaughnessy JD, Lorsbach RB (2012) Diagnostic usefulness and prognostic impact of CD200 expression in lymphoid malignancies and plasma cell myeloma. Am J Clin Pathol 137:93–100

    PubMed  PubMed Central  Google Scholar 

  31. D'Arena G, Valvano L, Vitale C, Coscia M, Statuto T, Bellesi S, Lamorte D, Musto P, Laurenti L, D'Auria F (2019) CD200 and prognosis in chronic lymphocytic leukemia: conflicting results. Leuk Res 83:106169

    PubMed  Google Scholar 

  32. Rexin P, Tauchert A, Hanze J, Heers H, Schmidt A, Hofmann R, Hegele A (2018) The immune checkpoint molecule CD200 is associated with tumor grading and metastasis in bladder cancer. Anticancer Res 38:2749–2754

    PubMed  CAS  Google Scholar 

  33. Clark DA, Dhesy-Thind S, Ellis P, Ramsay J (2014) The CD200-tolerance signaling molecule associated with pregnancy success is present in patients with early-stage breast cancer but does not favor nodal metastasis. Am J Reprod Immunol 72:435–439

    PubMed  CAS  Google Scholar 

  34. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14:399–416

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Erin N, Podnos A, Tanriover G, Duymus O, Cote E, Khatri I, Gorczynski RM (2015) Bidirectional effect of CD200 on breast cancer development and metastasis, with ultimate outcome determined by tumor aggressiveness and a cancer-induced inflammatory response. Oncogene 34:3860–3870

    PubMed  CAS  Google Scholar 

  36. Rygiel TP, Karnam G, Goverse G, van der Marel AP, Greuter MJ, van Schaarenburg RA, Visser WF, Brenkman AB, Molenaar R, Hoek RM, Mebius RE, Meyaard L (2012) CD200–CD200R signaling suppresses anti-tumor responses independently of CD200 expression on the tumor. Oncogene 31:2979–2988

    PubMed  CAS  Google Scholar 

  37. Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP, Lin PC (2004) Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6:409–421

    PubMed  CAS  Google Scholar 

  38. Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8:618–631

    PubMed  CAS  Google Scholar 

  39. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Mantovani A, Schioppa T, Porta C, Allavena P, Sica A (2006) Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev 25:315–322

    PubMed  Google Scholar 

  42. Xiong Z, Ampudia-Mesias E, Shaver R, Horbinski CM, Moertel CL, Olin MR (2016) Tumor-derived vaccines containing CD200 inhibit immune activation: implications for immunotherapy. Immunotherapy 8:1059–1071

    PubMed  PubMed Central  CAS  Google Scholar 

  43. McWhirter JR, Kretz-Rommel A, Saven A, Maruyama T, Potter KN, Mockridge CI, Ravey EP, Qin F, Bowdish KS (2006) Antibodies selected from combinatorial libraries block a tumor antigen that plays a key role in immunomodulation. Proc Natl Acad Sci USA 103:1041–1046

    PubMed  CAS  Google Scholar 

  44. Wong KK, Khatri I, Shaha S, Spaner DE, Gorczynski RM (2010) The role of CD200 in immunity to B cell lymphoma. J Leukoc Biol 88:361–372

    PubMed  CAS  Google Scholar 

  45. Gorczynski RM, Zhu F (2017) Checkpoint blockade in solid tumors and B-cell malignancies, with special consideration of the role of CD200. Cancer Manag Res 9:601–609

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the grants from the National Natural Science Foundation of China (Grant Nos. 81800118, 81773039) and Project of Shanghai Science and Technology Committee (Grant Nos. 17441903200, 17411950402).

Author information

Authors and Affiliations

Authors

Contributions

XB conceived and designed the experiments. CX and HZ performed the experiments and analyzed the data. XB, HZ and CX wrote the manuscript. JZ arranged the panels for flow cytometry. MX and SG prepared the patient samples. MY and JM diagnosed and provided patients’ information. YL and PZ helped to obtain and analyze RNA-seq data. XM, JT and CP provided assistance with revising the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Min Xu or Hua Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, C., Zhu, J., Gu, S. et al. CD200 is overexpressed in neuroblastoma and regulates tumor immune microenvironment. Cancer Immunol Immunother 69, 2333–2343 (2020). https://doi.org/10.1007/s00262-020-02589-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02589-6

Keywords

Navigation