Skip to main content

Advertisement

Log in

Less is more: reducing the number of administered chimeric antigen receptor T cells in a mouse model using a mathematically guided approach

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Chimeric antigen receptor T cell (CAR-T) therapy is a novel approved treatment for hematological malignancies, still under development for solid tumors. Here, we use a rate equation-based mathematical model to discover regimens and schedules that maintain efficacy while potentially reducing toxicity by decreasing the amount of CAR-T infused. Tested on an in vivo murine model of spontaneous breast cancer, we show that our mathematical model accurately recapitulates in vivo tumor growth results achieved in the previous experiments. Moreover, we use the mathematical model to predict results of new therapy schedules and successfully prospectively validated these predictions in the in vivo. We conclude that using one tenth and even one percent of a full CAR-T dose used in preclinical trials can achieve efficacious results similar to full dose treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CAR:

Chimeric antigen receptor

CTX:

Cyclophosphamide

d:

Days

E/T :

Effector/target

Her2tgm:

MMTV.f.huHer2 #5 (Fo5), (Genentech, USA)

References

  1. Gross G, Waks T, Eshhar Z (1989) Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA 86(24):10024–10028

    Article  CAS  Google Scholar 

  2. Eshhar Z, Waks T, Gross G, Schindler DG (1993) Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA 90(2):720–724

    Article  CAS  Google Scholar 

  3. Hwu P, Shafer GE, Treisman J, Schindler DG, Gross G, Cowherd R, Rosenberg SA, Eshhar Z (1993) Lysis of ovarian cancer cells by human lymphocytes redirected with a chimeric gene composed of an antibody variable region and the Fc receptor gamma chain. J Exp Med 178(1):361–366

    Article  CAS  Google Scholar 

  4. Hwu P, Yang JC, Cowherd R, Treisman J, Shafer GE, Eshhar Z, Rosenberg SA (1995) In vivo antitumor activity of T cells redirected with chimeric antibody/T-cell receptor genes. Cancer Res 55(15):3369–3373

    CAS  PubMed  Google Scholar 

  5. Kershaw MH et al (2006) A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 12:6106–6115

    Article  CAS  Google Scholar 

  6. Pinthus JH, Waks T, Malina V, Kaufman-Francis K, Harmelin A, Aizenberg I, Kanety H, Ramon J, Eshhar Z (2004) Adoptive immunotherapy of prostate cancer bone lesions using redirected effector lymphocytes. J Clin Investig 114(12):1774–1781

    Article  CAS  Google Scholar 

  7. June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365(8):725–733

    Article  Google Scholar 

  8. Stancovski I, Schindler DG, Waks T, Yarden Y, Sela M, Eshhar Z (1993) Targeting of T lymphocytes to Neu/HER2-expressing cells using chimeric single chain Fv receptors. J Immunol 151(11):6577–6582

    CAS  PubMed  Google Scholar 

  9. Vera J, Savoldo B, Vigouroux S, Biagi E, Pule M, Rossig C, Wu J, Heslop HE, Rooney CM, Brenner MK, Dotti G (2006) T lymphocytes redirected against the kappa light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells. Blood 108(12):3890–3897

    Article  CAS  Google Scholar 

  10. Zhao Y, Wang QJ, Yang S, Kochenderfer JN, Zheng Z, Zhong X, Sadelain M, Eshhar Z, Rosenberg SA, Morgan RA (2009) A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J Immunol 183(9):5563–5574

    Article  CAS  Google Scholar 

  11. Maliar A, Servais C, Waks T, Chmielewski M, Lavy R, Altevogt P, Abken H, Eshhar Z (2012) Redirected T cells that target pancreatic adenocarcinoma antigens eliminate tumors and metastases in mice. Gastroenterology 143(5):1375–1384

    Article  CAS  Google Scholar 

  12. Kohn DB, Dotti G, Brentjens R, Savoldo B, Jensen M, Cooper LJ et al (2011) CARs on track in the clinic. Mol Ther 19(3):432–438. https://doi.org/10.1038/mt.2011.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee DW, Barrett DM, Mackall C, Orentas R, Grupp SA (2012) The future is now: chimeric antigen receptors as new targeted therapies for childhood cancer. Clin Cancer Res 18(10):2780–2790

    Article  CAS  Google Scholar 

  14. Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365(8):725–733

    Article  CAS  Google Scholar 

  15. Rosenberg SA (2011) 2011 Cell transfer immunotherapy for metastatic solid cancer–what clinicians need to know. Nat Rev Clin Oncol 8(10):577–585. https://doi.org/10.1038/nrclinonc.2011.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cruz CR, Micklethwaite KP, Savoldo B, Ramos CA, Lam S, Ku S et al (2013) Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood 122(17):2965–2973

    Article  CAS  Google Scholar 

  17. Slaney CY, von Scheidt B, Davenport AJ, Beavis PA, Westwood JA, Mardiana S et al (2017) Dual-specific chimeric antigen receptor T cells and an indirect vaccine eradicate a variety of large solid tumors in an immunocompetent, self-antigen setting. Clin Cancer Res 23(10):2478–2490

    Article  CAS  Google Scholar 

  18. Kochenderfer JN, Somerville RPT, Lu T, Shi V, Bot A, Rossi J et al (2017) Lymphoma remissions caused by anti-CD19 chimeric antigen receptor T cells are associated with high serum interleukin-15 levels. J Clin Oncol 35(16):1803–1813

    Article  CAS  Google Scholar 

  19. Kochenderfer JN, Somerville RPT, Lu T, Yang JC, Sherry RM, Feldman SA et al (2017) Long-duration complete remissions of diffuse large B cell lymphoma after anti-CD19 chimeric antigen receptor T cell therapy. Mol Ther 25(10):2245–2253

    Article  CAS  Google Scholar 

  20. Irving M, Vuillefroy de Silly R, Scholten K, Dilek N, Coukos G (2017) Engineering chimeric antigen receptor T-cells for racing in solid tumors: don't forget the fuel. Front Immunol. 3(8):267. https://doi.org/10.3389/fimmu.2017.00267 (eCollection 2017)

    Article  CAS  Google Scholar 

  21. Wang X, Rivière I (2016) Clinical manufacturing of CAR T cells: foundation of a promising therapy. Mol Ther Oncolytics 3:16015

    Article  CAS  Google Scholar 

  22. Murray JD (2002) Mathematical biology I: an introduction. Springer, Berlin

    Book  Google Scholar 

  23. Edelshtein-Keshet L (1988) Mathematical models in biology. Mcgraw-Hill, Boston

    Google Scholar 

  24. Segel L (1980) Mathematical models in molecular and cellular biology. Cambridge University Press, Cambridge

    Google Scholar 

  25. Kuznetsov V, Makalkin I, Taylor M, Perelson A (1994) Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull Math Biol 2(56):295–321

    Article  Google Scholar 

  26. Kirschner D, Panetta J (1998) Modeling immunotherapy of the tumor–immune interaction. J Math Biol 37:235–252

    Article  CAS  Google Scholar 

  27. de Pillis LG, Radunskaya AE, Wiseman CL (2005) A validated mathematical model of cell-mediated immune response to tumor growth. Cancer Res 65(17):7950–7958

    Article  Google Scholar 

  28. Bunimovich-Mendrazitsky S, Halachmi S, Kronik N (2016) Improving Bacillus Calmette-Guérin (BCG) immunotherapy for bladder cancer by adding interleukin 2 (IL-2): a mathematical model. Math Med Biol 33(2):159–188. https://doi.org/10.1093/imammb/dqv007

    Article  PubMed  Google Scholar 

  29. Michor F, Hughes T, Iwasa Y, Branford S, Shah N, Sawyers C, Nowak M (2005) Dynamics of chronic myeloid leukemia. Nature 435:1267–1270

    Article  CAS  Google Scholar 

  30. Kronik N, Kogan Y, Vainstein V, Agur Z (2008) Improving alloreactive CTL immunotherapy for malignant gliomas using a simulation model of their interactive dynamics. Cancer Immunol Immunother 57:425–439

    Article  Google Scholar 

  31. Kronik N, Kogan Y, Elishmereni M, Halevi-Tobias K, Vuk-Pavlović S, Agur Z (2010) Predicting outcomes of prostate cancer immunotherapy by personalized mathematical models. PLoS ONE 5(12):e15482

    Article  Google Scholar 

  32. Kronik N, Kogan Y, Schlegel PG, Wolfl M (2012) Improving T-cell immunotherapy for melanoma through a mathematically motivated strategy: efficacy in numbers? J Immunother 35(2):116–124

    Article  Google Scholar 

  33. Globerson Levin A, Waks T, Eshhar Z (2014) Elimination of progressive mammary cancer by repeated administrations of chimeric antigen receptor-modified T cells. Mol Ther 22(5):1029–1038

    Article  CAS  Google Scholar 

  34. Narod SA (2012) Disappearing breast cancers. Curr Oncol 19(2):59–60

    Article  CAS  Google Scholar 

  35. Finkle D, Quan ZR, Asghari V, Kloss J, Ghaboosi N, Mai E et al (2004) HER2-targeted therapy reduces incidence and progression of midlife mammary tumors in female murine mammary tumor virus huHER2-transgenic mice. Clin Cancer Res 10(7):2499–2511

    Article  CAS  Google Scholar 

  36. Mojic M, Takeda K, Hayakawa Y (2017) The dark side of IFN-γ: its role in promoting cancer immunoevasion. Int J Mol Sci 19(1):89

    Article  Google Scholar 

  37. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A (2017) Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168(4):707–723

    Article  CAS  Google Scholar 

Download references

Funding

VV is supported by the I-CORE Program of the Planning and Budgeting Committee and The Israel Science Foundation under Grant Number 41/11.

Author information

Authors and Affiliations

Authors

Contributions

AGL was involved in study conception, study design, critical revision of the manuscript, data acquisition, data interpretation, and statistical analysis. NK was involved in study conception, study design, critical revision of the manuscript, data acquisition, data interpretation, and mathematical model development. TS was involved in study design and data interpretation. TW was involved in study conception, study design, critical revision of the manuscript, and data interpretation. ZE was involved in study conception, study design, critical revision of the manuscript, and data interpretation. VV was involved in study conception, study design, critical revision of the manuscript, and data interpretation.

Corresponding author

Correspondence to Anat Globerson Levin.

Ethics declarations

Conflict of interest

Zelig Eshhar is a member of the Scientific Advisory Board of Kite Pharma Inc. All other authors declare no conflict of interests.

Ethical approval and ethical standard

All animal experiments were performed in compliance with the guidelines of the Institutional Animal Care and Use Committee of TASMC. Ethical Approval Number 33-11-13 (2013 for 4 years). FVB and Her2tgm (Genentech, USA) mice were used.

Animal source

MMTV.f.huHer2 #5(Fo5) transgenic male mice (a gift from Genentech, San Francisco, CA). Female mice for mating were purchased from Envigo, Israel.

Cell line authentication

Mouse lymphocytes were obtained from splenocytes of FVB female mice.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 726 kb)

Supplementary file2 (PDF 390 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Globerson Levin, A., Kronik, N., Shiloach, T. et al. Less is more: reducing the number of administered chimeric antigen receptor T cells in a mouse model using a mathematically guided approach. Cancer Immunol Immunother 69, 1165–1175 (2020). https://doi.org/10.1007/s00262-020-02516-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02516-9

Keywords

Navigation