Skip to main content

Advertisement

Log in

Activation of dendritic cells by targeted DNA: a potential addition to the armamentarium for anti-cancer immunotherapy

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

In the past decade, remarkable progress has been made in immunotherapy against cancer. Specifically, the introduction of immune checkpoint inhibitors has revolutionized the field. However, many patients are unable to benefit significantly from this treatment option. One of the major reasons for this is most likely the absence of an adequate tumor-specific T cell response in these patients. A way to circumvent this problem might be to combine immune checkpoint inhibitor treatment with new strategies to activate tumor-specific T cells. One such strategy could be to activate and mature dendritic cells in situ. Dendritic cells carry an array of external and internal pattern recognition receptors that induce cell activation and maturation when interacting with their corresponding damage-associated or pathogen-associated molecular patterns (DAMPs or PAMPs). Targeting such molecular patterns directly to dendritic cells might be a way to evoke stronger immune responses. Here, we review our recent findings using antibody-targeted DNA. We summarize the results from our experiments showing that dendritic cells can be actively targeted in vivo through the αXβ2 integrin subunit CD11c, and that DNA delivered through this receptor in vitro leads to maturation of dendritic cells via the cytosolic cGAS/STING DNA-sensing pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

cDC1:

Classical type 1 dendritic cell

cDC2:

Classical type 2 dendritic cell

CDN:

Cyclic di-nucleotide

cGAMP:

Cyclic GMP–AMP

cGAS:

Cyclic GMP–AMP synthase

CR4:

Complement receptor 4

DAMP:

Damage-associated molecular pattern

ER:

Endoplasmic reticulum

IRF3:

Interferon regulatory factor 3

moDC:

Monocyte-derived dendritic cell

PAMP:

Pathogen-associated molecular pattern

pDC:

Plasmacytoid dendritic cell

PRR:

Pattern recognition receptor

STING:

Stimulator of interferon genes

TBK1:

TANK-binding kinase 1

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  2. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264. https://doi.org/10.1038/nrc3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wei SC, Levine JH, Cogdill AP et al (2017) Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 170:1120–1133. https://doi.org/10.1016/j.cell.2017.07.024.Distinct

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mellman I (2013) Dendritic cells: master regulators of the immune response. Cancer Immunol Res 1:145–149. https://doi.org/10.1158/2326-6066.CIR-13-0102

    Article  CAS  PubMed  Google Scholar 

  5. Böttcher JP, Reis e Sousa C (2018) The role of type 1 conventional dendritic cells in cancer immunity. Trends Cancer 4:784–792. https://doi.org/10.1016/j.trecan.2018.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thompson ED, Enriquez HL, Fu Y-X, Engelhard VH (2010) Tumor masses support naive T cell infiltration, activation, and differentiation into effectors. J Exp Med 207:1791–1804. https://doi.org/10.1084/jem.20092454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guilliams M, Ginhoux F, Jakubzick C et al (2014) Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol 14:571–578. https://doi.org/10.1038/nri3712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roberts EW, Broz ML, Binnewies M et al (2016) Critical Role for CD103 +/CD141 + dendritic cells bearing CCR8 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell 30:324–336. https://doi.org/10.1016/j.ccell.2016.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Diao J, Gu H, Tang M et al (2018) Tumor dendritic cells (DCs) derived from precursors of conventional DCs are dispensable for intratumor CTL responses. J Immunol 201:1306–1314. https://doi.org/10.4049/jimmunol.1701514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gardner A, Ruffell B (2016) Dendritic cells and cancer immunity. Trends Immunol 37:855–865. https://doi.org/10.1016/j.it.2016.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mitchell D, Chintala S, Dey M (2018) Plasmacytoid dendritic cell in immunity and cancer. J Neuroimmunol 322:63–73. https://doi.org/10.1016/j.jneuroim.2018.06.012

    Article  CAS  PubMed  Google Scholar 

  12. Spranger S, Bao R, Gajewski TF (2015) Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523:231–235. https://doi.org/10.1038/nature14404

    Article  CAS  PubMed  Google Scholar 

  13. Gabrilovich DI, Ishida T, Nadaf S et al (1999) Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin Cancer Res 5:2963–2970. https://doi.org/10.1158/1078-0432.ccr-06-2197

    Article  CAS  PubMed  Google Scholar 

  14. Park S-J, Nakagawa T, Kitamura H et al (2004) IL-6 regulates in vivo dendritic cell differentiation through STAT3 activation. J Immunol 173:3844–3854. https://doi.org/10.4049/jimmunol.173.6.3844

    Article  CAS  PubMed  Google Scholar 

  15. Hegde S, Pahne J, Smola-Hess S (2004) Novel immunosuppressive properties of interleukin-6 in dendritic cells: inhibition of NF-kappaB binding activity and CCR15 expression. FASEB J 18:1439–1441. https://doi.org/10.1096/fj.03-0969fje

    Article  CAS  PubMed  Google Scholar 

  16. Sato T, Terai M, Tamura Y et al (2011) Interleukin 10 in the tumor microenvironment: a target for anticancer immunotherapy. Immunol Res 51:170–182. https://doi.org/10.1007/s12026-011-8262-6

    Article  CAS  PubMed  Google Scholar 

  17. Mittal SK, Roche PA (2015) Suppression of antigen presentation by IL-10. Curr Opin Immunol 34:22–27. https://doi.org/10.1016/j.coi.2014.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bandola-Simon J, Roche PA (2018) Dysfunction of antigen processing and presentation by dendritic cells in cancer. Mol Immunol. https://doi.org/10.1016/j.molimm.2018.03.025

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pugholm LH, Varming K, Agger R (2016) Antibody-mediated delivery of antigen to dendritic cells. Immunother Open Access 02:1–10. https://doi.org/10.4172/2471-9552.1000119

    Article  Google Scholar 

  20. Pugholm LH, Varming K, Agger R (2015) In vitro assay for screening of optimal targets for antigen-delivery to murine dendritic cells. Scand J Immunol 82:498–505. https://doi.org/10.1111/sji.12365

    Article  CAS  PubMed  Google Scholar 

  21. Pugholm LH, Petersen LR, Søndergaard EKL et al (2015) Enhanced humoral responses induced by targeting of antigen to murine dendritic cells. Scand J Immunol 82:515–522. https://doi.org/10.1111/sji.12387

    Article  CAS  PubMed  Google Scholar 

  22. Castro FVV, Tutt AL, White AL et al (2008) CD11c provides an effective immunotarget for the generation of both CD4 and CD8 T cell responses. Eur J Immunol 38:2263–2273. https://doi.org/10.1002/eji.200838302

    Article  CAS  PubMed  Google Scholar 

  23. Wei H, Wang S, Zhang D et al (2009) Targeted delivery of tumor antigens to activated dendritic cells via CD11c molecules induces potent antitumor immunity in mice. Clin Cancer Res 15:4612–4621. https://doi.org/10.1158/1078-0432.CCR-08-3321

    Article  CAS  PubMed  Google Scholar 

  24. Bilsland CA, Diamond MS, Springer TA (1994) The leukocyte integrin p150,95 (CD11c/CD18) as a receptor for iC3b. Activation by a heterologous beta subunit and localization of a ligand recognition site to the I domain. J Immunol 152:4582–4589

    CAS  PubMed  Google Scholar 

  25. Vorup-Jensen T, Jensen RK (2018) Structural immunology of complement receptors 3 and 4. Front Immunol 9:2716. https://doi.org/10.3389/fimmu.2018.02716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ganguly D, Haak S, Sisirak V, Reizis B (2013) The role of dendritic cells in autoimmunity. Nat Rev Immunol 13:566–577. https://doi.org/10.1038/nri3477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hogg N, Takacs L, Palmer DG et al (1986) The p150,95 molecule is a marker of human mononuclear phagocytes: comparison with expression of class II molecules. Eur J Immunol 16:240–248. https://doi.org/10.1002/eji.1830160306

    Article  CAS  PubMed  Google Scholar 

  28. Postigo AA, Corbí AL, Sánchez-Madrid F, de Landázuri MO (1991) Regulated expression and function of CD11c/CD18 integrin on human B lymphocytes. Relation between attachment to fibrinogen and triggering of proliferation through CD11c/CD18. J Exp Med 174:1313–1322

    Article  CAS  PubMed  Google Scholar 

  29. Qualai J, Li L-X, Cantero J et al (2016) Expression of CD11c is associated with unconventional activated T cell subsets with high migratory potential. PLoS One 11:e0154253. https://doi.org/10.1371/journal.pone.0154253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12:991–1045. https://doi.org/10.1146/annurev.iy.12.040194.005015

    Article  CAS  PubMed  Google Scholar 

  31. Gornati L, Zanoni I, Granucci F (2018) Dendritic cells in the cross hair for the generation of tailored vaccines. Front Immunol 9:1484. https://doi.org/10.3389/fimmu.2018.01484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Galluzzi L, Buqué A, Kepp O et al (2017) Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol 17:97–111. https://doi.org/10.1038/nri.2016.107

    Article  CAS  PubMed  Google Scholar 

  33. Di Virgilio F, Dal Ben D, Sarti AC et al (2017) The P2X7 receptor in Infection and Inflammation. Immunity 47:15–31. https://doi.org/10.1016/j.immuni.2017.06.020

    Article  CAS  PubMed  Google Scholar 

  34. El-Moatassim C, Dubyak GR (1992) A novel pathway for the activation of phospholipase D by P2z purinergic receptors in BAC1.2F5 macrophages. J Biol Chem 267:23664–23673

    CAS  PubMed  Google Scholar 

  35. Kim S, Kim SY, Pribis JP et al (2013) Signaling of high mobility group box 1 (HMGB1) through toll-like receptor 4 in macrophages requires CD14. Mol Med 19:88–98. https://doi.org/10.2119/molmed.2012.00306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vabulas RM, Ahmad-Nejad P, Ghose S et al (2002) HSP70 as Endogenous stimulus of the toll/interleukin-1 receptor signal pathway. J Biol Chem 277:15107–15112. https://doi.org/10.1074/jbc.M111204200

    Article  CAS  PubMed  Google Scholar 

  37. Ferrari D, Chiozzi P, Falzoni S et al (1997) Extracellular ATP triggers IL-1 beta release by activating the purinergic P2Z receptor of human macrophages. J Immunol 159:1451–1458

    CAS  PubMed  Google Scholar 

  38. Ghiringhelli F, Apetoh L, Tesniere A et al (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity against tumors. Nat Med 15:1170–1178. https://doi.org/10.1038/nm.2028

    Article  CAS  PubMed  Google Scholar 

  39. Woo SR, Fuertes MB, Corrales L et al (2014) STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41:830–842. https://doi.org/10.1016/j.immuni.2014.10.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Laursen MF, Christensen E, Degn LLT et al (2018) CD11c-targeted Delivery of DNA to dendritic cells leads to cGAS- A nd STING-dependent maturation. J Immunother 41:9–18. https://doi.org/10.1097/CJI.0000000000000195

    Article  CAS  PubMed  Google Scholar 

  41. Ishikawa H, Barber GN (2008) STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455:674–678. https://doi.org/10.1038/nature07317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ishikawa H, Ma Z, Barber GN (2009) STING regulates intracellular DNA-mediated, type i interferon-dependent innate immunity. Nature 461:788–792. https://doi.org/10.1038/nature08476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tanaka Y, Chen ZJ (2013) STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci Signal. https://doi.org/10.1126/scisignal.2002521.STING

    Article  Google Scholar 

  44. Fitzgerald KA, McWhirter SM, Faia KL et al (2003) IKKE and TBKI are essential components of the IRF3 signalling pathway. Nat Immunol 4:491–496. https://doi.org/10.1038/ni921

    Article  CAS  PubMed  Google Scholar 

  45. Chen Q, Sun L, Chen ZJ (2016) Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol 17:1142–1149. https://doi.org/10.1038/ni.3558

    Article  CAS  PubMed  Google Scholar 

  46. Barber GN (2014) STING-dependent cytosolic DNA sensing pathways. Trends Immunol 35:88–93. https://doi.org/10.1016/j.it.2013.10.010

    Article  CAS  PubMed  Google Scholar 

  47. Wu J, Sun L, Chen X et al (2013) Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339:826–830. https://doi.org/10.1126/science.1232033

    Article  CAS  PubMed  Google Scholar 

  48. Sun L, Wu J, Du F et al (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339:786–791. https://doi.org/10.1126/science.1229963

    Article  CAS  PubMed  Google Scholar 

  49. Corrales L, Gajewski TF (2015) Molecular pathways: targeting the stimulator of interferon genes (STING) in the immunotherapy of cancer. Clin Cancer Res 21:4774–4779. https://doi.org/10.1158/1078-0432.CCR-15-1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Corrales L, Glickman LH, McWhirter SM et al (2015) Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep 11:1018–1030. https://doi.org/10.1016/j.celrep.2015.04.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nakamura T, Miyabe H, Hyodo M et al (2015) Liposomes loaded with a STING pathway ligand, cyclic di-GMP, enhance cancer immunotherapy against metastatic melanoma. J Control Release 216:149–157. https://doi.org/10.1016/j.jconrel.2015.08.026

    Article  CAS  PubMed  Google Scholar 

  52. Fu J, Kanne DB, Leong M et al (2015) STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci Transl Med 7:283ra52. https://doi.org/10.1126/scitranslmed.aaa4306

    Article  PubMed  PubMed Central  Google Scholar 

  53. Harrington KJJ, Brody J, Ingham M et al (2018) Preliminary results of the first-in-human (FIH) study of MK-1454, an agonist of stimulator of interferon genes (STING), as monotherapy or in combination with pembrolizumab (pembro) in patients with advanced solid tumors or lymphomas. Ann Oncol 29:viii712. https://doi.org/10.1093/annonc/mdy424.015

    Article  Google Scholar 

  54. Merad M, Sathe P, Helft J et al (2013) The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 31:563–604. https://doi.org/10.1146/annurev-immunol-020711-074950

    Article  CAS  PubMed  Google Scholar 

  55. Kuhn S, Yang J, Ronchese F (2015) Monocyte-derived dendritic cells are essential for CD8+ T cell activation and antitumor responses after local immunotherapy. Front Immunol 6:1–14. https://doi.org/10.3389/fimmu.2015.00584

    Article  CAS  Google Scholar 

Download references

Funding

The support for our research from The Danish Cancer Society (Grant No. A10193), Dansk Kræftforskningsfond, The Andersen-Isted Foundation, The Else og Mogens Wedell-Wedellsborgs Foundation, Familien Erichsens Mindefond, Fabrikant Einar Willumsens Mindefond and The Pedersen Charity Foundation, Vaduz, Liechtenstein is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Marlene Fyrstenberg Laursen, Emil Kofod-Olsen and Ralf Agger all contributed equally to the writing of the manuscript.

Corresponding author

Correspondence to Ralf Agger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fyrstenberg Laursen, M., Kofod-Olsen, E. & Agger, R. Activation of dendritic cells by targeted DNA: a potential addition to the armamentarium for anti-cancer immunotherapy. Cancer Immunol Immunother 68, 1875–1880 (2019). https://doi.org/10.1007/s00262-019-02400-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-019-02400-1

Keywords

Navigation