Skip to main content

Advertisement

Log in

Murine Th17 cells utilize IL-2 receptor gamma chain cytokines but are resistant to cytokine withdrawal-induced apoptosis

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Adoptive cellular therapy (ACT) with the Th17 subset of CD4+ T cells can cure established melanoma in preclinical models and holds promise for treating human cancer. However, little is known about the growth factors necessary for optimal engraftment and anti-tumor activity of Th17 cells. Due to the central role of IL-2 receptor gamma chain (IL2Rγ-chain) cytokines (IL-2, IL-7, and IL-15) in the activity and persistence of many T cell subsets after adoptive transfer, we hypothesized that these cytokines are important for Th17 cells. We found that Th17 cells proliferated in response to IL-2, IL-7, and IL-15 in vitro. However, in contrast to many other T cell subsets, including conventionally activated CD8+ T cells, we found that Th17 cells were resistant to apoptosis in the absence of IL2Rγ-chain cytokines. To determine whether Th17 cells utilize IL2Rγ-chain cytokines in vivo, we tracked Th17 cell engraftment after adoptive transfer with or without cytokine depletion. Depletion of IL-7 and/or IL-2 decreased initial engraftment, while depletion of IL-15 did not. Supplementation of IL-2 increased initial Th17 engraftment. To assess the clinical relevance of these findings, we treated melanoma-bearing mice with Th17 cell adoptive transfer and concurrent cytokine depletion or supplementation. We found that simultaneous depletion of IL-2 and IL-7 decreased therapeutic efficacy, depletion of IL-15 had no effect, and IL-2 supplementation increased therapeutic efficacy. Our results show that Th17 cells are responsive to IL2Rγ-chain cytokines, and provide insight into the application of these cytokines for Th17-based therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Akt:

Protein kinase B

B6:

C57BL/6

Bcl-2:

B-cell lymphoma 2

Bcl-xl:

B-cell lymphoma extra-large

BrdU:

5-bromo-2′-deoxyuridine

c-FLIP:

c-Fas-associated death domain-like interleukin-1-converting enzyme inhibitory protein

FoxO1:

Forkhead box protein O1

γδ T cells:

Gamma delta T cells

hgp100:

Human melanoma antigen gp100

IL2Rγ-chain cytokines:

Cytokines which signal through the common gamma chain (CD132) – here:IL-2, IL-7, and IL-15

Ki67:

Ki67 protein (proliferation marker)

Klf2:

Kruppel-like factor 2

MEK:

Mitogen activated protein kinase (MAPK) kinase

mTOR:

Mammalian target of rapamycin

NK:

Natural killer

NKT:

Natural killer T

PMA:

Phorbol 12-myristate 13-acetate

RAG-1:

Recombination activating gene 1

S6:

Ribosomal protein S6

Tc1:

T cytotoxic 1 subset

Tc17:

T cytotoxic 17 subset

Th17:

T helper 17 subset

References

  1. Rosenberg SA (2012) Raising the bar: the curative potential of human cancer immunotherapy. Sci Transl Med 4(127):128. doi:10.1126/scitranslmed.3003634

    Article  Google Scholar 

  2. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8(4):299–308. doi:10.1038/nrc2355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Muranski P, Boni A, Antony PA, Cassard L, Irvine KR, Kaiser A, Paulos CM, Palmer DC, Touloukian CE, Ptak K, Gattinoni L, Wrzesinski C, Hinrichs CS, Kerstann KW, Feigenbaum L, Chan CC, Restifo NP (2008) Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood 112(2):362–373. doi:10.1182/blood-2007-11-120998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Martin-Orozco N, Muranski P, Chung Y, Yang XO, Yamazaki T, Lu S, Hwu P, Restifo NP, Overwijk WW, Dong C (2009) T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 31(5):787–798. doi:10.1016/j.immuni.2009.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Muranski P, Borman ZA, Kerkar SP, Klebanoff CA, Ji Y, Sanchez-Perez L, Sukumar M, Reger RN, Yu Z, Kern SJ, Roychoudhuri R, Ferreyra GA, Shen W, Durum SK, Feigenbaum L, Palmer DC, Antony PA, Chan CC, Laurence A, Danner RL, Gattinoni L, Restifo NP (2011) Th17 cells are long lived and retain a stem cell-like molecular signature. Immunity 35(6):972–985. doi:10.1016/j.immuni.2011.09.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wei S, Zhao E, Kryczek I, Zou W (2012) Th17 cells have stem cell-like features and promote long-term immunity. Oncoimmunology 1(4):516–519

    Article  PubMed  PubMed Central  Google Scholar 

  7. Xie Y, Akpinarli A, Maris C, Hipkiss EL, Lane M, Kwon EK, Muranski P, Restifo NP, Antony PA (2010) Naive tumor-specific CD4(+) T cells differentiated in vivo eradicate established melanoma. J Exp Med 207(3):651–667. doi:10.1084/jem.20091921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Quezada SA, Simpson TR, Peggs KS, Merghoub T, Vider J, Fan X, Blasberg R, Yagita H, Muranski P, Antony PA, Restifo NP, Allison JP (2010) Tumor-reactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J Exp Med 207(3):637–650. doi:10.1084/jem.20091918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee Y, Awasthi A, Yosef N, Quintana FJ, Xiao S, Peters A, Wu C, Kleinewietfeld M, Kunder S, Hafler DA, Sobel RA, Regev A, Kuchroo VK (2012) Induction and molecular signature of pathogenic TH17 cells. Nat Immunol 13(10):991–999. doi:10.1038/ni.2416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ, Hwang LN, Yu Z, Wrzesinski C, Heimann DM, Surh CD, Rosenberg, Restifo NP (2005) Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med 202(7):907–912. doi:10.1084/jem.20050732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Overwijk WW, Schluns KS (2009) Functions of gammaC cytokines in immune homeostasis: current and potential clinical applications. Clin Immunol 132(2):153–165. doi:10.1016/j.clim.2009.03.512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ma A, Koka R, Burkett P (2006) Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Annu Rev Immunol 24:657–679. doi:10.1146/annurev.immunol.24.021605.090727

    Article  CAS  PubMed  Google Scholar 

  13. Rochman Y, Spolski R, Leonard WJ (2009) New insights into the regulation of T cells by gamma(c) family cytokines. Nat Rev Immunol 9(7):480–490. doi:10.1038/nri2580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vella AT, Dow S, Potter TA, Kappler J, Marrack P (1998) Cytokine-induced survival of activated T cells in vitro and in vivo. Proc Natl Acad Sci USA 95(7):3810–3815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cornish AL, Chong MM, Davey GM, Darwiche R, Nicola NA, Hilton DJ, Kay TW, Starr R, Alexander WS (2003) Suppressor of cytokine signaling-1 regulates signaling in response to interleukin-2 and other gamma c-dependent cytokines in peripheral T cells. J Biol Chem 278(25):22755–22761. doi:10.1074/jbc.M303021200

    Article  CAS  PubMed  Google Scholar 

  16. Kishimoto H, Sprent J (1999) Strong TCR ligation without costimulation causes rapid onset of Fas-dependent apoptosis of naive murine CD4+ T cells. J Immunol 163(4):1817–1826

    CAS  PubMed  Google Scholar 

  17. Bosque A, Marzo I, Naval J, Anel A (2007) Apoptosis by IL-2 deprivation in human CD8+ T cell blasts predominates over death receptor ligation, requires Bim expression and is associated with Mcl-1 loss. Mol Immunol 44(6):1446–1453. doi:10.1016/j.molimm.2006.04.029

    Article  CAS  PubMed  Google Scholar 

  18. Huang H, Hao S, Li F, Ye Z, Yang J, Xiang J (2007) CD4+ Th1 cells promote CD8+ Tc1 cell survival, memory response, tumor localization and therapy by targeted delivery of interleukin 2 via acquired pMHC I complexes. Immunology 120(2):148–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Laurence A, Tato CM, Davidson TS, Kanno Y, Chen Z, Yao Z, Blank RB, Meylan F, Siegel R, Hennighausen L, Shevach EM, O’Shea JJ (2007) Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26(3):371–381. doi:10.1016/j.immuni.2007.02.009

    Article  CAS  PubMed  Google Scholar 

  20. Wan Q, Kozhaya L, ElHed A, Ramesh R, Carlson TJ, Djuretic IM, Sundrud MS, Unutmaz D (2011) Cytokine signals through PI-3 kinase pathway modulate Th17 cytokine production by CCR6+ human memory T cells. J Exp Med 208(9):1875–1887. doi:10.1084/jem.20102516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nady S, Ignatz-Hoover J, Shata MT (2009) Interleukin-12 is the optimum cytokine to expand human Th17 cells in vitro. Clin Vaccine Immunol 16(6):798–805. doi:10.1128/CVI.00022-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boyman O, Purton JF, Surh CD, Sprent J (2007) Cytokines and T-cell homeostasis. Curr Opin Immunol 19(3):320–326. doi:10.1016/j.coi.2007.04.015

    Article  CAS  PubMed  Google Scholar 

  23. Gasper DJ, Tejera MM, Suresh M (2014) CD4 T-cell memory generation and maintenance. Crit Rev Immunol 34(2):121–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Overwijk WW, Theoret MR, Finkelstein SE, Surman DR, de Jong LA, Vyth-Dreese FA, Dellemijn TA, Antony PA, Spiess PJ, Palmer DC, Heimann DM, Klebanoff CA, Yu Z, Hwang LN, Feigenbaum L, Kruisbeek AM, Rosenberg SA, Restifo NP (2003) Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 198(4):569–580. doi:10.1084/jem.20030590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rubinstein MP, Lind NA, Purton JF, Filippou P, Best JA, McGhee PA, Surh CD, Goldrath AW (2008) IL-7 and IL-15 differentially regulate CD8+ T-cell subsets during contraction of the immune response. Blood 112(9):3704–3712. doi:10.1182/blood-2008-06-160945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Johnson CB, Riesenberg BP, May BR, Gilreath SC, Li G, Staveley-O’Carroll KF, Garrett-Mayer E, Mehrotra S, Cole DJ, Rubinstein MP (2015) Effector CD8+ T-cell engraftment and antitumor immunity in lymphodepleted hosts Is IL7Ralpha dependent. Cancer Immunol Res 3(12):1364–1374. doi:10.1158/2326-6066.CIR-15-0087-T

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lebrec H, Horner MJ, Gorski KS, Tsuji W, Xia D, Pan WJ, Means G, Pietz G, Li N, Retter M, Shaffer K, Patel N, Narayanan PK, Butz EA (2013) Homeostasis of human NK cells is not IL-15 dependent. J Immunol 191(11):5551–5558. doi:10.4049/jimmunol.1301000

    Article  CAS  PubMed  Google Scholar 

  28. Boyman O, Kovar M, Rubinstein MP, Surh CD, Sprent J (2006) Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 311(5769):1924–1927. doi:10.1126/science.1122927

    Article  CAS  PubMed  Google Scholar 

  29. Ring AM, Lin JX, Feng D, Mitra S, Rickert M, Bowman GR, Pande VS, Li P, Moraga I, Spolski R, Ozkan E, Leonard WJ, Garcia KC (2012) Mechanistic and structural insight into the functional dichotomy between IL-2 and IL-15. Nat Immunol 13(12):1187–1195. doi:10.1038/ni.2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Su EW, Moore CJ, Suriano S, Johnson CB, Songalia N, Patterson A, Neitzke DJ, Andrijauskaite K, Garrett-Mayer E, Mehrotra S, Paulos CM, Doedens AL, Goldrath AW, Li Z, Cole DJ, Rubinstein MP (2015) IL-2Ralpha mediates temporal regulation of IL-2 signaling and enhances immunotherapy. Sci Transl Med 7(311):311ra170. doi:10.1126/scitranslmed.aac8155

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dubois S, Mariner J, Waldmann TA, Tagaya Y (2002) IL-15Ralpha recycles and presents IL-15 In trans to neighboring cells. Immunity 17(5):537–547

    Article  CAS  PubMed  Google Scholar 

  32. Ogura H, Murakami M, Okuyama Y, Tsuruoka M, Kitabayashi C, Kanamoto M, Nishihara M, Iwakura Y, Hirano T (2008) Interleukin-17 promotes autoimmunity by triggering a positive-feedback loop via interleukin-6 induction. Immunity 29(4):628–636. doi:10.1016/j.immuni.2008.07.018

    Article  CAS  PubMed  Google Scholar 

  33. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, Teachey DT, Chew A, Hauck B, Wright JF, Milone MC, Levine BL, June CH (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368(16):1509–1518. doi:10.1056/NEJMoa1215134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Klebanoff CA, Gattinoni L, Torabi-Parizi P, Kerstann K, Cardones AR, Finkelstein SE, Palmer DC, Antony PA, Hwang ST, Rosenberg SA, Waldmann TA, Restifo NP (2005) Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci USA 102(27):9571–9576. doi:10.1073/pnas.0503726102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Palmer MJ, Mahajan VS, Chen J, Irvine DJ, Lauffenburger DA (2011) Signaling thresholds govern heterogeneity in IL-7-receptor-mediated responses of naive CD8(+) T cells. Immunol Cell Biol 89(5):581–594. doi:10.1038/icb.2011.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Akbar AN, Borthwick NJ, Wickremasinghe RG, Panayoitidis P, Pilling D, Bofill M, Krajewski S, Reed JC, Salmon M (1996) Interleukin-2 receptor common gamma-chain signaling cytokines regulate activated T cell apoptosis in response to growth factor withdrawal: selective induction of anti-apoptotic (bcl-2, bcl-xL) but not pro-apoptotic (bax, bcl-xS) gene expression. Eur J Immunol 26(2):294–299. doi:10.1002/eji.1830260204

    Article  CAS  PubMed  Google Scholar 

  37. Yu Y, Iclozan C, Yamazaki T, Yang X, Anasetti C, Dong C, Yu XZ (2009) Abundant c-Fas-associated death domain-like interleukin-1-converting enzyme inhibitory protein expression determines resistance of T helper 17 cells to activation-induced cell death. Blood 114(5):1026–1028. doi:10.1182/blood-2009-03-210153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fang Y, Yu S, Ellis JS, Sharav T, Braley-Mullen H (2010) Comparison of sensitivity of Th1, Th2, and Th17 cells to Fas-mediated apoptosis. J Leukoc Biol 87(6):1019–1028. doi:10.1189/jlb.0509352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lenardo M, Chan KM, Hornung F, McFarland H, Siegel R, Wang J, Zheng L (1999) Mature T lymphocyte apoptosis–immune regulation in a dynamic and unpredictable antigenic environment. Annu Rev Immunol 17:221–253. doi:10.1146/annurev.immunol.17.1.221

    Article  CAS  PubMed  Google Scholar 

  40. Pugazhenthi S, Nesterova A, Sable C, Heidenreich KA, Boxer LM, Heasley LE, Reusch JE (2000) Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J Biol Chem 275(15):10761–10766

    Article  CAS  PubMed  Google Scholar 

  41. Robbins PF, Dudley ME, Wunderlich J, El-Gamil M, Li YF, Zhou J, Huang J, Powell DJ Jr, Rosenberg SA (2004) Cutting edge: persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. J Immunol 173(12):7125–7130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, Citrin DE, Restifo NP, Robbins PF, Wunderlich JR, Morton KE, Laurencot CM, Steinberg SM, White DE, Dudley ME (2011) Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res 17(13):4550–4557. doi:10.1158/1078-0432.CCR-11-0116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bowers JS, Nelson MH, Kundimi S, Bailey SR, Huff LW, Schwartz KM, Cole DJ, Rubinstein MP, Paulos CM (2015) Dendritic cells in irradiated mice trigger the functional plasticity and antitumor activity of adoptively transferred Tc17 cells via IL12 signaling. Clin Cancer Res 21(11):2546–2557. doi:10.1158/1078-0432.CCR-14-2294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tan JT, Ernst B, Kieper WC, LeRoy E, Sprent J, Surh CD (2002) Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J Exp Med 195(12):1523–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Seddon B, Tomlinson P, Zamoyska R (2003) Interleukin 7 and T cell receptor signals regulate homeostasis of CD4 memory cells. Nat Immunol 4(7):680–686. doi:10.1038/ni946

    Article  CAS  PubMed  Google Scholar 

  46. Purton JF, Tan JT, Rubinstein MP, Kim DM, Sprent J, Surh CD (2007) Antiviral CD4+ memory T cells are IL-15 dependent. J Exp Med 204(4):951–961. doi:10.1084/jem.20061805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lenz DC, Kurz SK, Lemmens E, Schoenberger SP, Sprent J, Oldstone MB, Homann D (2004) IL-7 regulates basal homeostatic proliferation of antiviral CD4+ T cell memory. Proc Natl Acad Sci USA 101(25):9357–9362. doi:10.1073/pnas.0400640101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen XL, Bobbala D, Cepero Donates Y, Mayhue M, Ilangumaran S, Ramanathan S (2014) IL-15 trans-presentation regulates homeostasis of CD4(+) T lymphocytes. Cell Mol Immunol 11(4):387–397. doi:10.1038/cmi.2014.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wilson KA, Goding SR, Neely HR, Harris KM, Antony PA (2015) Depletion of B220 + NK1.1 + cells enhances the rejection of established melanoma by tumor-specific CD4+ T cells. Oncoimmunology 4(8):e1019196. doi:10.1080/2162402X.2015.1019196

    Article  PubMed  PubMed Central  Google Scholar 

  50. Webster KE, Kim HO, Kyparissoudis K, Corpuz TM, Pinget GV, Uldrich AP, Brink R, Belz GT, Cho JH, Godfrey DI, Sprent J (2014) IL-17-producing NKT cells depend exclusively on IL-7 for homeostasis and survival. Mucosal Immunol 7(5):1058–1067. doi:10.1038/mi.2013.122

    Article  CAS  PubMed  Google Scholar 

  51. Corpuz TM, Stolp J, Kim HO, Pinget GV, Gray DH, Cho JH, Sprent J, Webster KE (2016) Differential responsiveness of Innate-like IL-17- and IFN-gamma-producing gammadelta T cells to homeostatic cytokines. J Immunol 196(2):645–654. doi:10.4049/jimmunol.1502082

    Article  CAS  PubMed  Google Scholar 

  52. Ni J, Miller M, Stojanovic A, Garbi N, Cerwenka A (2012) Sustained effector function of IL-12/15/18-preactivated NK cells against established tumors. J Exp Med 209(13):2351–2365. doi:10.1084/jem.20120944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Annunziato F, Cosmi L, Liotta F, Maggi E, Romagnani S (2008) The phenotype of human Th17 cells and their precursors, the cytokines that mediate their differentiation and the role of Th17 cells in inflammation. Int Immunol 20(11):1361–1368. doi:10.1093/intimm/dxn106

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Casey White for assistance with tumor measurement. Support for this project was provided by the following grants and fellowships from the National Institutes of Health and National Cancer Institute: F30CA200272 (Jacob Bowers), T32GM008716 (Daniel Neitzke and Jacob Bowers), 5P01CA186866 (Zihai Li), 5R01CA188419 (Zihai Li), and 5R01CA175061 (Chrystal Paulos). We are also grateful to the Melanoma Research Alliance for grant funding (Mark Rubinstein). This work was also supported in part by the Biostatistics and the Cell Evaluation & Therapy Shared Resource, Hollings Cancer Center, Medical University of South Carolina (P30CA138313). We are grateful to Amgen for kindly providing anti-IL-15 mAb (clone M96).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark P. Rubinstein.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution where conducted.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 541 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neitzke, D.J., Bowers, J.S., Andrijauskaite, K. et al. Murine Th17 cells utilize IL-2 receptor gamma chain cytokines but are resistant to cytokine withdrawal-induced apoptosis. Cancer Immunol Immunother 66, 737–751 (2017). https://doi.org/10.1007/s00262-017-1965-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-1965-3

Keywords

Navigation