Skip to main content

Advertisement

Log in

The TLR-2/TLR-6 agonist macrophage-activating lipopeptide-2 augments human NK cell cytotoxicity when PGE2 production by monocytes is inhibited by a COX-2 blocker

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Macrophage-activating lipopeptide-2 (MALP-2) is a potent inducer of proinflammatory cytokine secretion by macrophages, monocytes, and dendritic cells. MALP-2 was reported to be involved in natural killer (NK) cell activation and ensuing tumor rejection. However, the mechanism of MALP-2-mediated NK cell activation remained unclear. Therefore, we studied the effects of MALP-2 on cultured human NK cells. We found that MALP-2 had no direct effect on NK cells. Instead, MALP-2 acted on monocytes and triggered the release of different molecules such as interleukin (IL)-1β, IL-6, IL-10, IL-12, IL-15, interferon gamma-induced protein (IP-10), and prostaglandin (PG)-E2. Our data show that monocyte-derived IP-10 could significantly induce NK cell cytotoxicity as long as the immunosuppression by PGE2 is specifically inhibited by cyclooxygenase (COX)-2 blockade. In summary, our results show that MALP-2-mediated stimulation of monocytes results in the production of several mediators which, depending on the prevailing conditions, affect the activity of NK cells in various ways. Hence, MALP-2 administration with concurrent blocking of COX-2 can be considered as a promising approach in MALP-2-based adjuvant tumor therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AIDS:

Acquired immunodeficiency syndrome

ANOVA:

Analysis of variance

COX:

Cyclooxygenase

ELISA:

Enzyme-linked immunosorbent assay

E:T:

Effector to target

FSC:

Forward scatter

HRP:

Horseradish peroxidase

IFN:

Interferon

IL:

Interleukin

IP:

Interferon-γ-induced protein

LU:

Lytic units

MALP:

Macrophage-activating lipopeptide

MIP:

Macrophage inflammatory protein

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NK:

Natural killer

PBMCs:

Peripheral blood mononuclear cells

PBS:

Phosphate-buffered saline

PG:

Prostaglandin

RPMI:

Roswell Park Memorial Institute

SEM:

Standard error of the mean

SSC:

Side scatter

sTNFR:

Soluble tumor necrosis factor receptor

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

TNFR:

Tumor necrosis factor receptor

References

  1. Embree J, Embil J (1980) Mycoplasmas in diseases of humans. Can Med Assoc J 123:105–111

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Cunha CB (2010) The first atypical pneumonia: the history of the discovery of Mycoplasma pneumoniae. Infect Dis Clin North Am 24:1–5

    Article  PubMed  Google Scholar 

  3. Viscardi R, Hasday J (2009) Role of Ureaplasma species in neonatal chronic lung disease: epidemiologic and experimental evidence. Pediatr Res 65:84R–90R

    Article  PubMed Central  PubMed  Google Scholar 

  4. Hartmann M (2009) Genital mycoplasmas. J Dtsch Dermatol Ges 7:371–377

    PubMed  Google Scholar 

  5. McGowin CL, Annan RS, Quayle AJ et al (2012) Persistent Mycoplasma genitalium infection of human endocervical epithelial cells elicits chronic inflammatory cytokine secretion. Infect Immun 80:3842–3849

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Yang J, Hooper W (2002) Regulation of proinflammatory cytokines in human lung epithelial cells infected with Mycoplasma pneumoniae. Infect Immun 70:3649–3655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Huang S, Li J, Wu J (2001) Mycoplasma infections and different human carcinomas. World J Gastroenterol 7:266–269

    CAS  PubMed  Google Scholar 

  8. Manhart LE, Mostad SB, Baeten JM et al (2008) High Mycoplasma genitalium organism burden is associated with shedding of HIV-1 DNA from the cervix. J Infect Dis 197:733–736

    Article  PubMed Central  PubMed  Google Scholar 

  9. Schneider C (2004) Tumour suppression induced by the macrophage activating lipopeptide MALP-2 in an ultrasound guided pancreatic carcinoma mouse model. Gut 53:355–361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Shingu K, Kruschinski C, Lührmann A et al (2003) Intratracheal macrophage-activating lipopeptide-2 reduces metastasis in the rat lung. Am J Respir Cell Mol Biol 28:316–321

    Article  CAS  PubMed  Google Scholar 

  11. Schmidt J, Welsch T, Jäger D et al (2007) Intratumoural injection of the toll-like receptor-2/6 agonist “macrophage-activating lipopeptide-2” in patients with pancreatic carcinoma: a phase I/II trial. Br J Cancer 97:598–604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Kaufmann A, Mühlradt PF, Gemsa D, Sprenger H (1999) Induction of cytokines and chemokines in human monocytes by Mycoplasma fermentans-derived lipoprotein MALP-2. Infect Immun 67:6303–6308

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Mühlradt PF, Kiess M, Meyer H et al (1997) Isolation, structure elucidation, and synthesis of a macrophage stimulatory lipopeptide from Mycoplasma fermentans acting at picomolar concentration. J Exp Med 185:1951–1958

    Article  PubMed Central  PubMed  Google Scholar 

  14. Takeuchi O, Kawai T, Mühlradt P (2001) Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13:933–940

    Article  CAS  PubMed  Google Scholar 

  15. Garcia J (1998) A Mycoplasma fermentans-derived synthetic lipopeptide induces AP-1 and NF-kB activity and cytokine secretion in macrophages via the activation of mitogen-activated protein kinase pathways. J Biol Chem 273:34391–34398

    Article  CAS  PubMed  Google Scholar 

  16. Deiters U, Mühlradt P (1999) Mycoplasmal lipopeptide MALP-2 induces the chemoattractant proteins macrophage inflammatory protein 1α (MIP-1α), monocyte chemoattractant protein 1, and MIP-2 and promotes leukocyte infiltration in mice. Infect Immun 67:3390–3398

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Link C, Gavioli R, Ebensen T et al (2004) The Toll-like receptor ligand MALP-2 stimulates dendritic cell maturation and modulates proteasome composition and activity. Eur J Immunol 34:899–907

    Article  CAS  PubMed  Google Scholar 

  18. Shimizu T, Kida Y, Kuwano K (2005) A dipalmitoylated lipoprotein from Mycoplasma pneumoniae activates NF-kB through TLR1, TLR2, and TLR6. J Immunol 175:4641–4646

    Article  CAS  PubMed  Google Scholar 

  19. Jacobs R, Hintzen G, Kemper A et al (2001) CD56bright cells differ in their KIR repertoire and cytotoxic features from CD56dim NK cells. Eur J Immunol 31:3121–3127

    Article  CAS  PubMed  Google Scholar 

  20. Adib-Conquy M, Scott-Algara D, Cavaillon J-M, Souza-Fonseca-Guimaraes F (2014) TLR-mediated activation of NK cells and their role in bacterial/viral immune responses in mammals. Immunol Cell Biol 92:256–262

    Article  CAS  PubMed  Google Scholar 

  21. Sawahata R, Shime H, Yamazaki S et al (2011) Failure of mycoplasma lipoprotein MALP-2 to induce NK cell activation through dendritic cell TLR2. Microbes Infect 13:350–358

    Article  CAS  PubMed  Google Scholar 

  22. Akao Y, Ebihara T, Masuda H et al (2009) Enhancement of antitumor natural killer cell activation by orally administered Spirulina extract in mice. Cancer Sci 100:1494–1501

    Article  CAS  PubMed  Google Scholar 

  23. Azuma M, Sawahata R, Akao Y et al (2010) The peptide sequence of diacyl lipopeptides determines dendritic cell TLR2-mediated NK activation. PLoS ONE 5:1–12

    Article  Google Scholar 

  24. Ma X, You X, Zeng Y et al (2013) Mycoplasma fermentans MALP-2 induces heme oxygenase-1 expression via mitogen-activated protein kinases and Nrf2 pathways to modulate cyclooxygenase 2 expression in human monocytes. Clin Vaccine Immunol 20:827–834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Knorr C, Marks D, Gerstberger R et al (2010) Peripheral and central cyclooxygenase (COX) products may contribute to the manifestation of brain-controlled sickness responses during localized inflammation induced by macrophage-activating lipopeptide-2 (MALP-2). Neurosci Lett 479:107–111

    Article  CAS  PubMed  Google Scholar 

  26. Choy H, Milas L (2003) Enhancing radiotherapy with cyclooxygenase-2 enzyme inhibitors: a rational advance? J Natl Cancer Inst 95:1440–1452

    Article  CAS  PubMed  Google Scholar 

  27. Simmons D, Botting R, Hla T (2004) Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev 56:387–437

    Article  CAS  PubMed  Google Scholar 

  28. Van Elssen CH, Vanderlocht J, Oth T et al (2011) Inflammation restraining effects of prostaglandin E2 on natural killer–dendritic cell (NK–DC) interaction are imprinted during DC maturation. Blood 118:2473–2482

    Article  PubMed  Google Scholar 

  29. Chatterjee D, Marquardt N, Tufa D et al (2014) Role of gamma-secretase in human umbilical-cord derived mesenchymal stem cell mediated suppression of NK cell cytotoxicity. Cell Commun Signal 12:63

    Article  PubMed Central  PubMed  Google Scholar 

  30. Tufa DM, Chatterjee D, Low HZ et al (2014) TNFR2 and IL-12 coactivation enables slanDCs to support NK-cell function via membrane-bound TNF-α. Eur J Immunol 44:3717–3728

    Article  CAS  PubMed  Google Scholar 

  31. Morr M, Takeuchi O, Akira S (2002) Differential recognition of structural details of bacterial lipopeptides by toll like receptors. Eur J Immunol 32:3337–3347

    Article  CAS  PubMed  Google Scholar 

  32. Schmidt R, MacDermott R, Bartley G (1985) Specific release of proteoglycans from human natural killer cells during target lysis. Nature 318:289–291

    Article  CAS  PubMed  Google Scholar 

  33. Bryant J, Day R (1992) Calculation of lytic units for the expression of cell-mediated cytotoxicity. J Immunol Methods 146:91–103

    Article  CAS  PubMed  Google Scholar 

  34. Maghazachi AA, Al-aoukaty A (1998) Chemokines activate natural killer cells through heterotrimeric G-proteins : implications for the treatment of AIDS and cancer. FASEB J 12:913–924

    CAS  PubMed  Google Scholar 

  35. Hornung V, Rothenfusser S, Britsch S et al (2002) Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 168:4531–4537

    Article  CAS  PubMed  Google Scholar 

  36. Akazawa T, Ohashi T, Nakajima H et al (2014) Development of a dendritic cell-targeting lipopeptide as an immunoadjuvant that inhibits tumor growth without inducing local inflammation. Int J Cancer 135:2847–2856

    Article  CAS  PubMed  Google Scholar 

  37. De Heer P, Sandel MH, Guertens G et al (2008) Celecoxib inhibits growth of tumors in a syngeneic rat liver metastases model for colorectal cancer. Cancer Chemother Pharmacol 62:811–819

    Article  PubMed Central  PubMed  Google Scholar 

  38. Khan Z, Khan N, Tiwari RP et al (2011) Biology of COX-2: an application in cancer therapeutics. Curr Drug Targets 12:1082–1093

    Article  CAS  PubMed  Google Scholar 

  39. Sarkar FH, Adsule S, Li Y, Padhye S (2007) Back to the future: COX-2 inhibitors for chemoprevention and cancer therapy. Mini Rev Med Chem 7:599–608

    Article  CAS  PubMed  Google Scholar 

  40. Jinushi M, Komohara Y (2015) Tumor-associated macrophages as an emerging target against tumors: creating a new path from bench to bedside. Biochim Biophys Acta 1855:123–130

    CAS  PubMed  Google Scholar 

  41. Chanmee T, Ontong P, Konno K, Itano N (2014) Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel) 6:1670–1690

    Article  CAS  Google Scholar 

  42. Wang W, Bergh A, Damber JE (2005) Cyclooxygenase-2 expression correlates with local chronic inflammation and tumor neovascularization in human prostate cancer. Clin Cancer Res 11:3250–3256

    Article  CAS  PubMed  Google Scholar 

  43. Grote K, Schuett H, Salguero G et al (2010) Toll-like receptor 2/6 stimulation promotes angiogenesis via GM-CSF as a potential strategy for immune defense and tissue regeneration. Blood 115:2543–2552

    Article  CAS  PubMed  Google Scholar 

  44. Deiters U, Barsig J, Tawil B, Mühlradt PF (2004) The macrophage-activating lipopeptide-2 accelerates wound healing in diabetic mice. Exp Dermatol 13:731–739

    Article  CAS  PubMed  Google Scholar 

  45. Martin GM, Stockfleth E (2012) Diclofenac sodium 3% gel for the management of actinic keratosis: 10+ years of cumulative evidence of efficacy and safety. J Drugs Dermatol 11:600–608

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to extend their sincere appreciation to Sabine Buyny for her help with the chromium release assays. This work was supported by grants from the Deutsche Forschungsgemeinschaft (DFG): SFB738/A5, Hannover Biomedical Research School (HBRS), REBIRTH Cluster of Excellence, Niedersächsische Krebsgesellschaft e.V. The funding agencies had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

The authors have no financial, personal, or professional conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Jacobs.

Additional information

Christina Müller and Dejene M. Tufa have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, C., Tufa, D.M., Chatterjee, D. et al. The TLR-2/TLR-6 agonist macrophage-activating lipopeptide-2 augments human NK cell cytotoxicity when PGE2 production by monocytes is inhibited by a COX-2 blocker. Cancer Immunol Immunother 64, 1175–1184 (2015). https://doi.org/10.1007/s00262-015-1723-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-015-1723-3

Keywords

Navigation