Skip to main content
Log in

Novel N-amidinopiperidine-based proteasome inhibitor preserves dendritic cell functionality and rescues their Th1-polarizing capacity in Ramos-conditioned tumor environment

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The tumor microenvironment represents a burden that hampers the proper activation of immune cells, including the dendritic cells (DCs). It is, therefore, desired that the important characteristics of a given anticancer drug candidate be seen as consisting not solely of its antitumor properties, but that it also lacks potential side effects that could additionally constrain the development and function of immune cells associated with tumor immunity. We have previously identified compounds with a N-amidinopiperidine scaffold that selectively induce apoptosis in Burkitt’s lymphoma cells through proteasome inhibition. Here, we demonstrate that SPI-15 affected neither the viability of DCs nor their differentiation. In addition, the compound had no significant effect on their cytokine secretion or allostimulatory capacity. Moreover, DC functionality in the context of tumor microenvironment was also unaffected, as demonstrated by experiments performed on DCs differentiated in Ramos-conditioned media in the presence or absence of SPI-15. The cytokine profile and functional assays revealed that SPI-15 rescues DC differentiation from the immunosuppressive environment produced by Ramos cells; this was seen by their reacquired ability to induce IFN-γ-secretion from naïve CD4+CD45RA+ T cells and the consequently induced Th1-effector differentiation. Herein, we present novel characteristics of an N-amidinopiperidine-based protease inhibitor whose anticancer properties are not associated with the immunosuppression of DCs. We propose future studies toward the design of structurally similar compounds with the aim of developing potent anticancer drugs with minimal negative effects on crucial factors involved in tumor immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CCR7:

C–C chemokine receptor type 7

DCs:

Dendritic cell

DC-SIGN:

Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin

HLA-DR:

Human leukocyte antigen D-related

IDO:

Indoleamine-2,3-dioxygenase

LPS:

Lipopolysaccharide

MHC:

Major histocompatibility complex

MLR:

Mixed lymphocyte reaction

MSR-1:

Macrophage scavenger receptor 1

NfκB:

Nuclear factor κB

PRRs:

Pattern recognition receptors

SPI-15:

Serine protease inhibitor 15

TCR:

T cell receptor

TGF-β:

Transforming growth factor β

TLR:

Toll-like receptor

References

  1. Wu J (2002) On the role of proteasomes in cell biology and proteasome inhibition as a novel frontier in the development of immunosuppressants. Am J Transplant 2(10):904–912. doi:10.1034/j.1600-6143.2002.21006.x

    Article  CAS  PubMed  Google Scholar 

  2. Adams J (2004) The proteasome: a suitable antineoplastic target. Nat Rev Cancer 4(5):349–360. doi:10.1038/nrc1361nrc1361

    Article  CAS  PubMed  Google Scholar 

  3. McConkey DJ, Zhu K (2008) Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resist Updat 11(4–5):164–179. doi:10.1016/j.drup.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  4. Sun K, Welniak LA, Panoskaltsis-Mortari A, O’Shaughnessy MJ, Liu H, Barao I, Riordan W, Sitcheran R, Wysocki C, Serody JS, Blazar BR, Sayers TJ, Murphy WJ (2004) Inhibition of acute graft-versus-host disease with retention of graft-versus-tumor effects by the proteasome inhibitor bortezomib. Proc Natl Acad Sci U S A 101(21):8120–8125. doi:10.1073/pnas.04015631010401563101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Koreth J, Alyea EP, Murphy WJ, Welniak LA (2009) Proteasome inhibition and allogeneic hematopoietic stem cell transplantation: a review. Biol Blood Marrow Transplant 15(12):1502–1512. doi:10.1016/j.bbmt.2009.07.016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Nencioni A, Schwarzenberg K, Brauer KM, Schmidt SM, Ballestrero A, Grunebach F, Brossart P (2006) Proteasome inhibitor bortezomib modulates TLR4-induced dendritic cell activation. Blood 108(2):551–558. doi:10.1182/blood-2005-08-3494

    Article  CAS  PubMed  Google Scholar 

  7. Nencioni A, Garuti A, Schwarzenberg K, Cirmena G, Dal Bello G, Rocco I, Barbieri E, Brossart P, Patrone F, Ballestrero A (2006) Proteasome inhibitor-induced apoptosis in human monocyte-derived dendritic cells. Eur J Immunol 36(3):681–689. doi:10.1002/eji.200535298

    Article  CAS  PubMed  Google Scholar 

  8. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811. doi:10.1146/annurev.immunol.18.1.767

    Article  CAS  PubMed  Google Scholar 

  9. Kaliński P, Hilkens CMU, Wierenga EA, Kapsenberg ML (1999) T-cell priming by type-1and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today 20(12):561–567. doi:10.1016/s0167-5699(99)01547-9

    Article  PubMed  Google Scholar 

  10. Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4(12):941–952. doi:10.1038/nri1498

    Article  CAS  PubMed  Google Scholar 

  11. Gobec M, Obreza A, Prijatelj M, Brus B, Gobec S, Mlinaric-Rascan I (2012) Selective cytotoxicity of amidinopiperidine based compounds towards Burkitt’s lymphoma cells involves proteasome inhibition. PLoS ONE 7(7):e41961. doi:10.1371/journal.pone.0041961PONE-D-12-05942

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Hansson M, Lundgren A, Elgbratt K, Quiding-Järbrink M, Svennerholm A-M, Johansson E-L (2006) Dendritic cells express CCR7 and migrate in response to CCL19 (MIP-3β) after exposure to Helicobacter pylori. Microbes and Infect 8(3):841–850. doi:10.1016/j.micinf.2005.10.007

    Article  CAS  Google Scholar 

  13. Almond JB, Cohen GM (2002) The proteasome: a novel target for cancer chemotherapy. Leukemia 16(4):433–443. doi:10.1038/sj.leu.2402417

    Article  CAS  PubMed  Google Scholar 

  14. Frisan T, Levitsky V, Masucci MG (2000) Variations in proteasome subunit composition and enzymatic activity in B-lymphoma lines and normal B cells. Int J Cancer 88(6):881–888. doi:10.1002/1097-0215(20001215)88:6<881:AID-IJC7>3.0.CO;2-D

    Article  CAS  PubMed  Google Scholar 

  15. Keats JJ, Fonseca R, Chesi M, Schop R, Baker A, Chng WJ, Van Wier S, Tiedemann R, Shi CX, Sebag M, Braggio E, Henry T, Zhu YX, Fogle H, Price-Troska T, Ahmann G, Mancini C, Brents LA, Kumar S, Greipp P, Dispenzieri A, Bryant B, Mulligan G, Bruhn L, Barrett M, Valdez R, Trent J, Stewart AK, Carpten J, Bergsagel PL (2007) Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 12(2):131–144. doi:10.1016/j.ccr.2007.07.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Wang L, Kumar S, Fridley BL, Kalari KR, Moon I, Pelleymounter LL, Hildebrandt MA, Batzler A, Eckloff BW, Wieben ED, Greipp PR (2008) Proteasome beta subunit pharmacogenomics: gene resequencing and functional genomics. Clin Cancer Res 14(11):3503–3513. doi:10.1158/1078-0432.CCR-07-5150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Teicher BA (2007) Transforming growth factor-beta and the immune response to malignant disease. Clin Cancer Res 13(21):6247–6251. doi:10.1158/1078-0432.CCR-07-1654

    Article  CAS  PubMed  Google Scholar 

  18. Houston A, Bennett MW, O’Sullivan GC, Shanahan F, O’Connell J (2003) Fas ligand mediates immune privilege and not inflammation in human colon cancer, irrespective of TGF-beta expression. Br J Cancer 89(7):1345–1351. doi:10.1038/sj.bjc.66012406601240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, Boon T, Van den Eynde BJ (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9(10):1269–1274. doi:10.1038/nm934nm934

    Article  CAS  PubMed  Google Scholar 

  20. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K (2010) Development of monocytes, macrophages, and dendritic cells. Science 327(5966):656–661. doi:10.1126/science.1178331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Švajger U, Anderluh M, Jeras M, Obermajer N (2010) C-type lectin DC-SIGN: an adhesion, signalling and antigen-uptake molecule that guides dendritic cells in immunity. Cell Signal 22(10):1397–1405. doi:10.1016/j.cellsig.2010.03.018

    Article  PubMed  Google Scholar 

  22. Lutz MB, Schuler G (2002) Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol 23(9):445–449

    Article  CAS  PubMed  Google Scholar 

  23. Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2(8):675–680. doi:10.1038/9060990609

    Article  CAS  PubMed  Google Scholar 

  24. Kalinski P, Okada H (2010) Polarized dendritic cells as cancer vaccines: directing effector-type T cells to tumors. Semin Immunol 22(3):173–182. doi:10.1016/j.smim.2010.03.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Hayden MS, Ghosh S (2004) Signaling to NF-kappaB. Genes Dev 18(18):2195–2224. doi:10.1101/gad.122870418/18/2195

    Article  CAS  PubMed  Google Scholar 

  26. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252

    Article  CAS  PubMed  Google Scholar 

  27. Komohara Y, Horlad H, Ohnishi K, Ohta K, Makino K, Hondo H, Yamanaka R, Kajiwara K, Saito T, Kuratsu J, Takeya M (2011) M2 macrophage/microglial cells induce activation of Stat3 in primary central nervous system lymphoma. J Clin Exp Hematop 51(2):93–99. doi:10.3960/jslrt.51.93

    Article  PubMed  Google Scholar 

  28. Niino D, Komohara Y, Murayama T, Aoki R, Kimura Y, Hashikawa K, Kiyasu J, Takeuchi M, Suefuji N, Sugita Y, Takeya M, Ohshima K (2010) Ratio of M2 macrophage expression is closely associated with poor prognosis for angioimmunoblastic T-cell lymphoma (AITL). Pathol Int 60(4):278–283. doi:10.1111/j.1440-1827.2010.02514.x

    Article  PubMed  Google Scholar 

  29. Komohara Y, Ohnishi K, Kuratsu J, Takeya M (2008) Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol 216(1):15–24. doi:10.1002/path.2370

    Article  CAS  PubMed  Google Scholar 

  30. Relloso M, Puig-Kroger A, Pello OM, Rodriguez-Fernandez JL, de la Rosa G, Longo N, Navarro J, Munoz-Fernandez MA, Sanchez-Mateos P, Corbi AL (2002) DC-SIGN (CD209) expression is IL-4 dependent and is negatively regulated by IFN, TGF-beta, and anti-inflammatory agents. J Immunol 168(6):2634–2643

    Article  CAS  PubMed  Google Scholar 

  31. Snijders A, Kalinski P, Hilkens CM, Kapsenberg ML (1998) High-level IL-12 production by human dendritic cells requires two signals. Int Immunol 10(11):1593–1598

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Mlinarič-Raščan.

Additional information

Urban Švajger and Martina Gobec have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Švajger, U., Gobec, M., Obreza, A. et al. Novel N-amidinopiperidine-based proteasome inhibitor preserves dendritic cell functionality and rescues their Th1-polarizing capacity in Ramos-conditioned tumor environment. Cancer Immunol Immunother 64, 15–27 (2015). https://doi.org/10.1007/s00262-014-1608-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-014-1608-x

Keywords

Navigation