Skip to main content
Log in

Expression of ERp5 and GRP78 on the membrane of chronic lymphocytic leukemia cells: association with soluble MICA shedding

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

MICA is a ligand of the activating receptor NKG2D, expressed by NK and T cells. MICA expression is induced in cancer cells favoring their elimination by the immune system; however, many advanced tumors shed soluble MICA (sMICA), which impairs NKG2D-mediated cytotoxicity. ERp5 and GRP78 are endoplasmic reticulum-resident proteins that are translocated to the surface of epithelial tumor cells where they interact with MICA and are involved in sMICA shedding. In this study, we analyze the role of ERp5 and GRP78 in sMICA shedding in chronic lymphocytic leukemia (CLL). Immunofluorescence and flow cytometry analyses showed that ERp5 and GRP78 were significantly expressed on the surface of B cells and leukemia cells, but they were not expressed on T cells. The expression of ERp5 and GRP78 was significantly higher in leukemia cells than in B cells from controls. ERp5 and GRP78 co-localized with MICA on the surface of leukemia cells and the levels of expression of ERp5 and GRP78 correlated with the level of expression of membrane-bound MICA in CLL patients. Associated with higher expression of membrane-bound ERp5 and GRP78, serum sMICA levels were approximately threefold higher in patients than in controls. Elevated sMICA levels in CLL patients were associated with the down-modulation of NKG2D surface expression on CD8 T cells. Finally, pharmacological inhibition of B cell lines and stimulated leukemia cells showed that ERp5 activity is involved in sMICA shedding in CLL. In conclusion, these results uncover a molecular mechanism which regulates MICA protein shedding and immune evasion in CLL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–729. doi:10.1126/science.285.5428.727

    Article  PubMed  CAS  Google Scholar 

  2. Raulet DH (2003) Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 3:781–790. doi:10.1038/nri1199

    Article  PubMed  CAS  Google Scholar 

  3. Lopez-Larrea C, Suarez-Alvarez B, Lopez-Soto A, Lopez-Vazquez A, Gonzalez S (2008) The NKG2D receptor: sensing stressed cells. Trends Mol Med 14:179–189. doi:10.1016/j.molmed.2008.02.004

    Article  PubMed  CAS  Google Scholar 

  4. Bahram S, Bresnahan M, Geraghty DE, Spies T (1994) A second lineage of mammalian major histocompatibility complex class I genes. Proc Natl Acad Sci USA 91:6259–6263. doi:10.1073/pnas.91.14.6259

    Article  PubMed  CAS  Google Scholar 

  5. Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T (1999) Broad tumour-associated expression and recognition by tumour-derived gamma delta Tcells of MICA and MICB. Proc Natl Acad Sci USA 96:6879–6884. doi:10.1073/pnas.96.12.6879

    Article  PubMed  CAS  Google Scholar 

  6. Gasser S, Orsulic S, Brown EJ, Raulet DH (2005) The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436:1186–1190. doi:10.1038/nature03884

    Article  PubMed  CAS  Google Scholar 

  7. Groh V, Bahram S, Bauer S, Herman A, Beauchamp M, Spies T (1996) Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc Natl Acad Sci USA 93:12445–12450. doi:10.1073/pnas.93.22.12445

    Article  PubMed  CAS  Google Scholar 

  8. González S, López-Soto A, Suárez-Álvarez B, López-Vázquez A, López-Larrea C (2008) NKG2D ligands: key targets of the immune response. Trends Immunol 14:179–189. doi:10.1016/j.it.2008.04.007

    Google Scholar 

  9. Diefenbach A, Jensen ER, Jamieson AM, Raulet DH (2001) Rae1 and H60 ligands of the NKG2D receptor stimulate tumor immunity. Nature 413:165–171. doi:10.1038/35093109

    Article  PubMed  CAS  Google Scholar 

  10. Cerwenka A, Baron JL, Lanier LL (2001) Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc Natl Acad Sci USA 98:11521–11526. doi:10.1073/pnas.201238598

    Article  PubMed  CAS  Google Scholar 

  11. Lopez-Soto A, Folgueras AR, Seto E, Gonzalez S (2009) HDAC3 represses the expression of NKG2D ligands ULBPs in epithelial tumor cells: potential implications for the immunosurveillance of cancer. Oncogene 28:2370–2382. doi:10.1038/onc.2009.117

    Article  PubMed  CAS  Google Scholar 

  12. Groh V, Wu J, Yee C, Spies T (2002) Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419:734–738. doi:10.1038/nature01112

    Article  PubMed  CAS  Google Scholar 

  13. Salih HR, Rammensee HG, Steinle A (2002) Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. J Immunol 169:4098–4102

    PubMed  CAS  Google Scholar 

  14. Salih HR, Antropius H, Gieseke F, Lutz SZ, Kanz L, Rammensee HG, Steinle A (2003) Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood 102:1389–1396. doi:10.1182/blood-2003-01-0019

    Article  PubMed  CAS  Google Scholar 

  15. Rebmann V, Schütt P, Brandhorst D, Opalka B, Moritz T, Nowrousian MR, Grosse-Wilde H (2007) Soluble MICA as an independent prognostic factor for the overall survival and progression-free survival of multiple myeloma patients. Clin Immunol 123:114–120. doi:10.1016/j.clim.2006.11.007

    Article  PubMed  CAS  Google Scholar 

  16. Nückel H, Switala M, Sellmann L, Horn PA, Dürig J, Dührsen U, Küppers R, Grosse-Wilde H, Rebmann V (2010) The prognostic significance of soluble NKG2D ligands in B-cell chronic lymphocytic leukemia. Leukemia. doi:10.1038/leu.2010.74

  17. Jordan PA, Stevens JM, Hubbard GP, Barrett NE, Sage T, Authi KS, Gibbins JM (2005) A role for the thiol isomerase protein ERP5 in platelet function. Blood 105(4):1500–1507. doi:10.1182/blood-2004-02-0608

    Article  PubMed  CAS  Google Scholar 

  18. Tager M, Kroning H, Thiel U, Ansorge S (1997) Membrane-bound protein disulphide isomerase (PDI) is involved in regulation of surface expression of thiols and drug sensitivity of B-CLL cells. Exp Hematol 25:601–607

    PubMed  CAS  Google Scholar 

  19. Holbrook LM, Watkins NA, Simmonds AD, Jones CI, Ouwehand WH, Gibbins JM (2010) Platelets release novel thiol isomerase enzymes which are recruited to the cell surface following activation. Br J Haematol 148(4):627–637. doi:10.1111/j.1365-2141.2009.07994

    Article  PubMed  CAS  Google Scholar 

  20. Kaiser BK, Yim D, Chow IT, González S, Dai Z, Mann HH, Strong RK, Groh V, Spies T (2007) Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands. Nature 447:482–486. doi:10.1038/nature05768

    Article  PubMed  CAS  Google Scholar 

  21. Zhang LH, Zhang X (2010) Roles of GRP78 in physiology and cancer. J Cell Biochem 110(6):1299–1305. doi:10.1002/jcb.22679

    Article  PubMed  CAS  Google Scholar 

  22. Jinushi M, Vanneman M, Munshi NC, Tai YT, Prabhala RH, Ritz J, Neuberg D, Anderson KC, Carrasco DR, Dranoff G (2008) MHC class I chain-related protein A antibodies and shedding are associated with the progression of multiple myeloma. Proc Natl Acad Sci USA 105:1285–1290. doi:10.1073/pnas.0711293105

    Article  PubMed  CAS  Google Scholar 

  23. Fonseca C, Soiffer R, Ho V, Vanneman M, Jinushi M, Ritz J, Neuberg D, Stone R, DeAngelo D, Dranoff G (2009) Protein disulfide isomerases are antibody targets during immune-mediated tumor destruction. Blood 113:1681–1688. doi:10.1182/blood-2007-09-114157

    Article  PubMed  Google Scholar 

  24. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Döhner H, Hillmen P, Keating MJ, Montserrat E, Rai KR, Kipps TJ (2008) Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the international workshop on chronic lymphocytic leukemia updating the National Cancer Institute-working group 1996 guidelines. Blood 111:5446–5456. doi:10.1182/blood-2007-06-093906

    Article  PubMed  CAS  Google Scholar 

  25. Hamblin TJ, Orchard JA, Ibbotson RE, Davis Z, Thomas PW, Stevenson FK, Oscier DC (2002) CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia, but CD38 expression may vary during the course of the disease. Blood 99(3):1023–1029. doi:10.1182/blood.V99.3.1023

    Article  PubMed  CAS  Google Scholar 

  26. Nückel H, Rebmann V, Dürig J, Dührsen U, Grosse-Wilde H (2005) HLA-G expression is associated with an unfavorable outcome and immunodeficiency in chronic lymphocytic leukemia. Blood 105(4):1694–1698. doi:10.1182/blood-2004-08-3335

    Article  PubMed  Google Scholar 

  27. Wiemann K, Mittrücker HW, Feger U, Welte SA, Yokoyama WM, Spies T, Rammensee HG, Steinle A (2005) Systemic NKG2D down-regulation impairs NK and CD8 T cell responses in vivo. J Immunol 175(2):720–729

    PubMed  CAS  Google Scholar 

  28. Kohga K, Takehara T, Tatsumi T, Miyagi T, Ishida H, Ohkawa K, Kanto T, Hiramatsu N, Hayashi N (2009) Anticancer chemotherapy inhibits MHC class I-related chain a ectodomain shedding by downregulating ADAM10 expression in hepatocellular carcinoma. Cancer Res 69(20):8050–8057. doi:10.1158/0008-5472.CAN-09-0789

    Article  PubMed  CAS  Google Scholar 

  29. Kohga K, Takehara T, Tatsumi T, Ishida H, Miyagi T, Hosui A, Hayashi N (2010) Sorafenib inhibits the shedding of major histocompatibility complex class I-related chain A on hepatocellular carcinoma cells by down-regulating a disintegrin and metalloproteinase 9. Hepatology 51(4):1264–1273. doi:10.1002/hep.23456

    Article  PubMed  CAS  Google Scholar 

  30. Liu G, Atteridge CL, Wang X, Lundgren AD, Wu JD (2010) The membrane type matrix metalloproteinase MMP14 mediates constitutive shedding of MHC class I chain-related molecule A independent of A disintegrin and metalloproteinases. J Immunol 184(7):3346–3350. doi:10.4049/jimmunol.0903789

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish grants of Fondo de Investigaciones Sanitarias (Institute Carlos III) PS09/00420 and FIS PI08/0566. ALS holds a predoctoral fellowship from FICYT of Asturias (BP06-99).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Segundo Gonzalez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huergo-Zapico, L., Gonzalez-Rodriguez, A.P., Contesti, J. et al. Expression of ERp5 and GRP78 on the membrane of chronic lymphocytic leukemia cells: association with soluble MICA shedding. Cancer Immunol Immunother 61, 1201–1210 (2012). https://doi.org/10.1007/s00262-011-1195-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1195-z

Keywords

Navigation