Skip to main content

Advertisement

Log in

Effective antibody therapy induces host-protective antitumor immunity that is augmented by TLR4 agonist treatment

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Toll-like receptors are potent activators of the innate immune system and generate signals leading to the initiation of the adaptive immune response that can be utilized for therapeutic purposes. We tested the hypothesis that combined treatment with a Toll-like receptor agonist and an antitumor monoclonal antibody is effective and induces host-protective antitumor immunity. C57BL/6 human mutated HER2 (hmHER2) transgenic mice that constitutively express kinase-deficient human HER2 under control of the CMV promoter were established. These mice demonstrate immunological tolerance to D5-HER2, a syngeneic human HER2-expressing melanoma cell line. This human HER2-tolerant model offers the potential to serve as a preclinical model to test both antibody therapy and the immunization potential of human HER2-targeted therapeutics. Here, we show that E6020, a Toll-like receptor-4 (TLR4) agonist effectively boosted the antitumor efficacy of the monoclonal antibody trastuzumab in immunodeficient C57BL/6 SCID mice as well as in C57BL/6 hmHER2 transgenic mice. E6020 and trastuzumab co-treatment resulted in significantly greater inhibition of tumor growth than was observed with either agent individually. Furthermore, mice treated with the combination of trastuzumab and the TLR4 agonist were protected against rechallenge with human HER2-transfected tumor cells in hmHER2 transgenic mouse strains. These findings suggest that combined treatment with trastuzumab and a TLR4 agonist not only promotes direct antitumor effects but also induces a host-protective human HER2-directed adaptive immune response, indicative of a memory response. These data provide an immunological rationale for testing TLR4 agonists in combination with antibody therapy in patients with cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

hmHER2 Tg:

Human mutated HER2 transgenic mouse

TLR:

Toll-like receptor

ADCC:

Antibody-dependent cellular cytotoxicity

References

  1. McLaughlin P, Grillo-Lopez AJ, Link BK, Levy R, Czuczman MS, Williams ME, Heyman MR, Bence-Bruckler I, White CA, Cabanillas F, Jain V, Ho AD, Lister J, Wey K, Shen D, Dallaire BK (1998) Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 16(8):2825–2833

    PubMed  CAS  Google Scholar 

  2. Kaminski MS, Estes J, Zasadny KR, Francis IR, Ross CW, Tuck M, Regan D, Fisher S, Gutierrez J, Kroll S, Stagg R, Tidmarsh G, Wahl RL (2000) Radioimmunotherapy with iodine (131)I tositumomab for relapsed or refractory B-cell non-Hodgkin lymphoma: updated results and long-term follow-up of the University of Michigan experience. Blood 96(4):1259–1266

    PubMed  CAS  Google Scholar 

  3. Weiner LM, Belldegrun AS, Crawford J, Tolcher AW, Lockbaum P, Arends RH, Navale L, Amado RG, Schwab G, Figlin RA (2008) Dose and schedule study of panitumumab monotherapy in patients with advanced solid malignancies. Clin Cancer Res 14(2):502–508

    Article  PubMed  CAS  Google Scholar 

  4. Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, Bets D, Mueser M, Harstrick A, Verslype C, Chau I, Van Cutsem E (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351(4):337–345

    Article  PubMed  CAS  Google Scholar 

  5. Egen JG, Kuhns MS, Allison JP (2002) CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol 3(7):611–618

    Article  PubMed  CAS  Google Scholar 

  6. Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 6(4):443–446

    Article  PubMed  CAS  Google Scholar 

  7. Minard-Colin V, Xiu Y, Poe JC, Horikawa M, Magro CM, Hamaguchi Y, Haas KM, Tedder TF (2008) Lymphoma depletion during CD20 immunotherapy in mice is mediated by macrophage FcgammaRI, FcgammaRIII, and FcgammaRIV. Blood 112(4):1205–1213

    Article  PubMed  CAS  Google Scholar 

  8. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, Watier H (2002) Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 99(3):754–758

    Article  PubMed  CAS  Google Scholar 

  9. Weng WK, Levy R (2003) Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 21(21):3940–3947

    Article  PubMed  CAS  Google Scholar 

  10. Borghaei H, Alpaugh RK, Bernardo P, Palazzo IE, Dutcher JP, Venkatraj U, Wood WC, Goldstein L, Weiner LM (2007) Induction of adaptive Anti-HER2/neu immune responses in a Phase 1B/2 trial of 2B1 bispecific murine monoclonal antibody in metastatic breast cancer (E3194): a trial coordinated by the Eastern Cooperative Oncology Group. J Immunother 30(4):455–467

    Article  PubMed  CAS  Google Scholar 

  11. Taylor C, Hershman D, Shah N, Suciu-Foca N, Petrylak DP, Taub R, Vahdat L, Cheng B, Pegram M, Knutson KL, Clynes R (2007) Augmented HER-2 specific immunity during treatment with trastuzumab and chemotherapy. Clin Cancer Res 13(17):5133–5143

    Article  PubMed  CAS  Google Scholar 

  12. Park S, Jiang Z, Mortenson ED, Deng L, Radkevich-Brown O, Yang X, Sattar H, Wang Y, Brown NK, Greene M, Liu Y, Tang J, Wang S, Fu YX (2010) The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell 18(2):160–170

    Article  PubMed  CAS  Google Scholar 

  13. Gilman AL, Ozkaynak MF, Matthay KK, Krailo M, Yu AL, Gan J, Sternberg A, Hank JA, Seeger R, Reaman GH, Sondel PM (2009) Phase I study of ch14.18 with granulocyte-macrophage colony-stimulating factor and interleukin-2 in children with neuroblastoma after autologous bone marrow transplantation or stem-cell rescue: a report from the Children’s Oncology Group. J Clin Oncol 27(1):85–91

    Article  PubMed  CAS  Google Scholar 

  14. Weiner LM, Steplewski Z, Koprowski H, Litwin S, Comis RL (1988) Divergent dose-related effects of gamma-interferon therapy on in vitro antibody-dependent cellular and nonspecific cytotoxicity by human peripheral blood monocytes. Cancer Res 48(4):1042–1046

    PubMed  CAS  Google Scholar 

  15. Leonard JP, Link BK, Emmanouilides C, Gregory SA, Weisdorf D, Andrey J, Hainsworth J, Sparano JA, Tsai DE, Horning S, Krieg AM, Weiner GJ (2007) Phase I trial of toll-like receptor 9 agonist PF-3512676 with and following rituximab in patients with recurrent indolent and aggressive non Hodgkin’s lymphoma. Clin Cancer Res 13(20):6168–6174

    Article  PubMed  CAS  Google Scholar 

  16. Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fehrenbacher L, Wolter JM, Paton V, Shak S, Lieberman G, Slamon DJ (1999) Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 17(9):2639–2648

    PubMed  CAS  Google Scholar 

  17. Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, Slamon DJ, Murphy M, Novotny WF, Burchmore M, Shak S, Stewart SJ, Press M (2002) Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20(3):719–726

    Article  PubMed  CAS  Google Scholar 

  18. Cooley S, Burns LJ, Repka T, Miller JS (1999) Natural killer cell cytotoxicity of breast cancer targets is enhanced by two distinct mechanisms of antibody-dependent cellular cytotoxicity against LFA-3 and HER2/neu. Exp Hematol 27(10):1533–1541

    Article  PubMed  CAS  Google Scholar 

  19. Stocklin E, Botteri F, Groner B (1993) An activated allele of the c-erbB-2 oncogene impairs kidney and lung function and causes early death of transgenic mice. J Cell Biol 122(1):199–208

    Article  PubMed  CAS  Google Scholar 

  20. Finkle D, Quan ZR, Asghari V, Kloss J, Ghaboosi N, Mai E, Wong WL, Hollingshead P, Schwall R, Koeppen H, Erickson S (2004) HER2-targeted therapy reduces incidence and progression of midlife mammary tumors in female murine mammary tumor virus huHER2-transgenic mice. Clin Cancer Res 10(7):2499–2511

    Article  PubMed  CAS  Google Scholar 

  21. Piechocki MP, Ho YS, Pilon S, Wei WZ (2003) Human ErbB-2 (Her-2) transgenic mice: a model system for testing Her-2 based vaccines. J Immunol 171(11):5787–5794

    PubMed  CAS  Google Scholar 

  22. Ishizaka ST, Hawkins LD (2007) E6020: a synthetic Toll-like receptor 4 agonist as a vaccine adjuvant. Expert Rev Vaccines 6(5):773–784

    Article  PubMed  CAS  Google Scholar 

  23. Hawkins LD, Ishizaka ST, McGuinness P, Zhang H, Gavin W, DeCosta B, Meng Z, Yang H, Mullarkey M, Young DW, Rossignol DP, Nault A, Rose J, Przetak M, Chow JC, Gusovsky F (2002) A novel class of endotoxin receptor agonists with simplified structure, toll-like receptor 4-dependent immunostimulatory action, and adjuvant activity. J Pharmacol Exp Ther 300(2):655–661

    Article  PubMed  CAS  Google Scholar 

  24. Przetak M, Chow J, Cheng H, Rose J, Hawkins LD, Ishizaka ST (2003) Novel synthetic LPS receptor agonists boost systemic and mucosal antibody responses in mice. Vaccine 21(9–10):961–970

    Article  PubMed  CAS  Google Scholar 

  25. Morefield GL, Hawkins LD, Ishizaka ST, Kissner TL, Ulrich RG (2007) Synthetic Toll-like receptor 4 agonist enhances vaccine efficacy in an experimental model of toxic shock syndrome. Clin Vaccine Immunol 14(11):1499–1504

    Article  PubMed  CAS  Google Scholar 

  26. Baudner BC, Ronconi V, Casini D, Tortoli M, Kazzaz J, Singh M, Hawkins LD, Wack A, O’Hagan DT (2009) MF59 emulsion is an effective delivery system for a synthetic TLR4 agonist (E6020). Pharm Res 26(6):1477–1485

    Article  PubMed  CAS  Google Scholar 

  27. Weiner LM, Dhodapkar MV, Ferrone S (2009) Monoclonal antibodies for cancer immunotherapy. Lancet 373(9668):1033–1040

    Article  PubMed  CAS  Google Scholar 

  28. Weiner LM, Surana R, Wang S (2010) Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol 10(5):317–327

    Article  PubMed  CAS  Google Scholar 

  29. Kim PS, Armstrong TD, Song H, Wolpoe ME, Weiss V, Manning EA, Huang LQ, Murata S, Sgouros G, Emens LA, Reilly RT, Jaffee EM (2008) Antibody association with HER-2/neu-targeted vaccine enhances CD8 T cell responses in mice through Fc-mediated activation of DCs. J Clin Invest 118(5):1700–1711

    Article  PubMed  CAS  Google Scholar 

  30. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, Yang H, Amigorena S, Ryffel B, Barrat FJ, Saftig P, Levi F, Lidereau R, Nogues C, Mira JP, Chompret A, Joulin V, Clavel-Chapelon F, Bourhis J, Andre F, Delaloge S, Tursz T, Kroemer G, Zitvogel L (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13(9):1050–1059

    Article  PubMed  CAS  Google Scholar 

  31. Bevaart L, Jansen MJ, van Vugt MJ, Verbeek JS, van de Winkel JG, Leusen JH (2006) The high-affinity IgG receptor, FcgammaRI, plays a central role in antibody therapy of experimental melanoma. Cancer Res 66(3):1261–1264

    Article  PubMed  CAS  Google Scholar 

  32. Wooldridge JE, Ballas Z, Krieg AM, Weiner GJ (1997) Immunostimulatory oligodeoxynucleotides containing CpG motifs enhance the efficacy of monoclonal antibody therapy of lymphoma. Blood 89(8):2994–2998

    PubMed  CAS  Google Scholar 

  33. Rittirsch D, Flierl MA, Day DE, Nadeau BA, Zetoune FS, Sarma JV, Werner CM, Wanner GA, Simmen HP, Huber-Lang MS, Ward PA (2009) Cross-talk between TLR4 and FcgammaReceptorIII (CD16) pathways. PLoS Pathog 5(6):e1000464

    Article  PubMed  Google Scholar 

  34. Saenger YM, Li Y, Chiou KC, Chan B, Rizzuto G, Terzulli SL, Merghoub T, Houghton AN, Wolchok JD (2008) Improved tumor immunity using anti-tyrosinase related protein-1 monoclonal antibody combined with DNA vaccines in murine melanoma. Cancer Res 68(23):9884–9891

    Article  PubMed  CAS  Google Scholar 

  35. Schmidt EV, Christoph G, Zeller R, Leder P (1990) The cytomegalovirus enhancer: a pan-active control element in transgenic mice. Mol Cell Biol 10(8):4406–4411

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank C. Shaller for technical assistance; S. Jablonski for review of this paper; and Antai Wang, Hongfang Liu and Ionut Bebu for help in statistical analyses. We are grateful to the support of Georgetown University’s and Fox Chase Cancer Center’s Animal Resources Facilities, Flow Cytometry and Cell Sorting Shared Resources, Microscopy and Imaging Shared Resources, Hybridoma facility and the Histology and Tissue Shared Resources. This work was supported by National Institutes of Health Grants R01 CA121033, R21 CA126932, R01 CA050633, CA051008 and by the Eisai Research Institute. B. A. Littlefield, L. D. Hawkins, S. T. Ishizaka are solely affiliated with Eisai Research Institute of Boston, Inc., a company fully owned by Eisai Co., Ltd. Other authors have no conflicting financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis M. Weiner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Astsaturov, I.A., Bingham, C.A. et al. Effective antibody therapy induces host-protective antitumor immunity that is augmented by TLR4 agonist treatment. Cancer Immunol Immunother 61, 49–61 (2012). https://doi.org/10.1007/s00262-011-1090-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1090-7

Keywords

Navigation