Skip to main content

Advertisement

Log in

CD8 Co-receptor promotes susceptibility of CD8+ T cells to transforming growth factor-β (TGF-β)-mediated suppression

  • Short Communication
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

CD8+ T cell function depends on a finely orchestrated balance of activation/suppression signals. While the stimulatory role of the CD8 co-receptor and pleiotropic capabilities of TGF-β have been studied individually, the influence of CD8 co-receptor on TGF-β function in CD8+ T cells is unknown. Here, we show that while CD8 enhances T cell activation, it also enhances susceptibility to TGF-β-mediated immune suppression. Using Jurkat cells expressing a full-length, truncated or no αβCD8 molecule, we demonstrate that cells expressing full-length αβCD8 were highly susceptible, αβCD8-truncated cells were partially susceptible, and CD8-deficient cells were completely resistant to suppression by TGF-β. Additionally, we determined that inhibition of Lck rendered mouse CD8+ T cells highly resistant to TGF-β suppression. Resistance was not associated with TGF-β receptor expression but did correlate with decreased Smad3 and increased Smad7 levels. These findings highlight a previously unrecognized third role for CD8 co-receptor which appears to prepare activated CD8+ T cells for response to TGF-β. Based on the important role which TGF-β-mediated suppression plays in tumor immunology, these findings unveil necessary considerations in formulation of CD8+ T cell-related cancer immunotherapy strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Gao GF, Tormo J, Gerth UC, Wyer JR, McMichael AJ, Stuart DI, Bell JI, Jones EY, Jakobsen BK (1997) Crystal structure of the complex between human CD8alpha(alpha) and HLA-A2. Nature 387(6633):630–634. doi:10.1038/42523

    Article  CAS  PubMed  Google Scholar 

  2. Norment AM, Salter RD, Parham P, Engelhard VH, Littman DR (1988) Cell-cell adhesion mediated by CD8 and MHC class I molecules. Nature 336(6194):79–81. doi:10.1038/336079a0

    Article  CAS  PubMed  Google Scholar 

  3. Purbhoo MA, Boulter JM, Price DA, Vuidepot AL, Hourigan CS, Dunbar PR, Olson K, Dawson SJ, Phillips RE, Jakobsen BK, Bell JI, Sewell AK (2001) The human CD8 co-receptor effects cytotoxic T cell activation and antigen sensitivity primarily by mediating complete phosphorylation of the T cell receptor zeta chain. J Biol Chem 276(35):32786–32792. doi:10.1074/jbc.M102498200

    Article  CAS  PubMed  Google Scholar 

  4. Veillette A, Bookman MA, Horak EM, Bolen JB (1988) The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell 55(2):301–308. doi:0092-8674(88)90053-0

    Article  CAS  PubMed  Google Scholar 

  5. Salmond RJ, Filby A, Qureshi I, Caserta S, Zamoyska R (2009) T-cell receptor proximal signaling via the Src-family kinases, Lck and Fyn, influences T-cell activation, differentiation, and tolerance. Immunol Rev 228(1):9–22. doi:10.1111/j.1600-065X.2008.00745.x

    Article  CAS  PubMed  Google Scholar 

  6. Blobe GC, Schiemann WP, Lodish HF (2000) Role of transforming growth factor beta in human disease. N Engl J Med 342(18):1350–1358. doi:10.1056/NEJM200005043421807

    Article  CAS  PubMed  Google Scholar 

  7. Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA (2006) Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 24:99–146. doi:10.1146/annurev.immunol.24.021605.090737

    Article  CAS  PubMed  Google Scholar 

  8. Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC, Roberts AB, Sporn MB, Ward JM, Karlsson S (1993) Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA 90(2):770–774

    Article  CAS  PubMed  Google Scholar 

  9. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM (2003) Conversion of peripheral CD4 + CD25- naive T cells to CD4 + CD25 + regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198(12):1875–1886. doi:10.1084/jem.20030152

    Article  CAS  PubMed  Google Scholar 

  10. Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Weaver CT (2006) Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441(7090):231–234. doi:10.1038/nature04754

    Article  CAS  PubMed  Google Scholar 

  11. Massague J (1998) TGF-beta signal transduction. Annu Rev Biochem 67:753–791. doi:10.1146/annurev.biochem.67.1.753

    Article  CAS  PubMed  Google Scholar 

  12. Zawel L, Dai JL, Buckhaults P, Zhou S, Kinzler KW, Vogelstein B, Kern SE (1998) Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell 1(4):611–617. doi:S1097-2765(00)80061-1

    Article  CAS  PubMed  Google Scholar 

  13. Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, Tamaki K, Hanai J, Heldin CH, Miyazono K, ten Dijke P (1997) TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J 16(17):5353–5362. doi:10.1093/emboj/16.17.5353

    Article  CAS  PubMed  Google Scholar 

  14. Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL (2000) Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell 6(6):1365–1375. doi:S1097-2765(00)00134-9

    Article  CAS  PubMed  Google Scholar 

  15. Schneider U, Schwenk HU, Bornkamm G (1977) Characterization of EBV-genome negative “null” and “T” cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. Int J Cancer 19(5):621–626

    Article  CAS  PubMed  Google Scholar 

  16. Lyons GE, Moore T, Brasic N, Li M, Roszkowski JJ, Nishimura MI (2006) Influence of human CD8 on antigen recognition by T-cell receptor-transduced cells. Cancer Res 66(23):11455–11461. doi:10.1158/0008-5472.CAN-06-2379

    Article  CAS  PubMed  Google Scholar 

  17. Wooldridge L, Hutchinson SL, Choi EM, Lissina A, Jones E, Mirza F, Dunbar PR, Price DA, Cerundolo V, Sewell AK (2003) Anti-CD8 antibodies can inhibit or enhance peptide-MHC class I (pMHCI) multimer binding: this is paralleled by their effects on CTL activation and occurs in the absence of an interaction between pMHCI and CD8 on the cell surface. J Immunol 171(12):6650–6660

    CAS  PubMed  Google Scholar 

  18. Cole DJ, Weil DP, Shilyansky J, Custer M, Kawakami Y, Rosenberg SA, Nishimura MI (1995) Characterization of the functional specificity of a cloned T-cell receptor heterodimer recognizing the MART-1 melanoma antigen. Cancer Res 55(4):748–752

    CAS  PubMed  Google Scholar 

  19. Roszkowski JJ, Lyons GE, Kast WM, Yee C, Van Besien K, Nishimura MI (2005) Simultaneous generation of CD8+ and CD4+ melanoma-reactive T cells by retroviral-mediated transfer of a single T-cell receptor. Cancer Res 65(4):1570–1576. doi:10.1158/0008-5472.CAN-04-2076

    Article  CAS  PubMed  Google Scholar 

  20. Callender GG, Rosen HR, Roszkowski JJ, Lyons GE, Li M, Moore T, Brasic N, McKee MD, Nishimura MI (2006) Identification of a hepatitis C virus-reactive T cell receptor that does not require CD8 for target cell recognition. Hepatology 43(5):973–981. doi:10.1002/hep.21157

    Article  CAS  PubMed  Google Scholar 

  21. Abraham RT, Weiss A (2004) Jurkat T cells and development of the T-cell receptor signalling paradigm. Nat Rev Immunol 4(4):301–308. doi:10.1038/nri1330

    Article  CAS  PubMed  Google Scholar 

  22. Weiss A, Wiskocil RL, Stobo JD (1984) The role of T3 surface molecules in the activation of human T cells: a two-stimulus requirement for IL 2 production reflects events occurring at a pre-translational level. J Immunol 133(1):123–128

    CAS  PubMed  Google Scholar 

  23. Thomas DA, Massague J (2005) TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8(5):369–380. doi:10.1016/j.ccr.2005.10.012

    Article  CAS  PubMed  Google Scholar 

  24. Gorska MM, Stafford SJ, Cen O, Sur S, Alam R (2004) Unc119, a novel activator of Lck/Fyn, is essential for T cell activation. J Exp Med 199(3):369–379. doi:10.1084/jem.20030589

    Article  CAS  PubMed  Google Scholar 

  25. Holdorf AD, Lee KH, Burack WR, Allen PM, Shaw AS (2002) Regulation of Lck activity by CD4 and CD28 in the immunological synapse. Nat Immunol 3(3):259–264. doi:10.1038/ni761

    Article  CAS  PubMed  Google Scholar 

  26. Huppa JB, Axmann M, Mortelmaier MA, Lillemeier BF, Newell EW, Brameshuber M, Klein LO, Schutz GJ, Davis MM (2010) TCR-peptide-MHC interactions in situ show accelerated kinetics and increased affinity. Nature 463 (7283):963–967. doi: 10.1038/nature08746

    Google Scholar 

  27. Glaichenhaus N, Shastri N, Littman DR, Turner JM (1991) Requirement for association of p56lck with CD4 in antigen-specific signal transduction in T cells. Cell 64(3):511–520. doi:0092-8674(91)90235-Q

    Article  CAS  PubMed  Google Scholar 

  28. Campanelli R, Palermo B, Garbelli S, Mantovani S, Lucchi P, Necker A, Lantelme E, Giachino C (2002) Human CD8 co-receptor is strictly involved in MHC-peptide tetramer-TCR binding and T cell activation. Int Immunol 14(1):39–44

    Article  CAS  PubMed  Google Scholar 

  29. Daniels MA, Jameson SC (2000) Critical role for CD8 in T cell receptor binding and activation by peptide/major histocompatibility complex multimers. J Exp Med 191(2):335–346

    Article  CAS  PubMed  Google Scholar 

  30. Giroux M, Delisle JS, O’Brien A, Hebert MJ, Perreault C (2010) T cell activation leads to protein kinase Ctheta-dependent inhibition of TGF-beta signaling. J Immunol 185 (3):1568–1576. doi: 10.4049/jimmunol.1000137

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Flow Cytometry Facility and The Fitch Monoclonal Antibody Facility at The University of Chicago and the MUSC Center for Cellular Therapy for their invaluable support. The Center for Cellular Therapy is supported in part by the Clinical and Translational Science Award support grant (UL 1 RR029882) and the Hollings Cancer Center. This work was supported in part by the American Cancer Society (ACSLIB112496-RSG, to J. A. G.), American Cancer Society–Illinois Division (Young Investigator Award Grant #07-20, to J. A. G), the National Institutes of Health (R21CA127037-01A1 to J. A. G.), Cancer Research Foundation (Young Investigator Award, to J. A. G), National Institutes of Health (T32 Immunology Training Grant, The University of Chicago, AI07090 to A.Z. and AI00790 to F. J. K.), and the National Institutes of Health (R01CA104947, to M. I. N.). The authors have no financial conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Guevara-Patiño.

Electronic supplementary material

Below is the link to the electronic supplementary material.

262_2010_962_MOESM1_ESM.tif

Supplemental Fig. 1 Expression of CD8 co-receptor on Jurkat cells and relative percent suppression of IL-2 production after Lck inhibitor treatment. A, Expression of αβCD8 on untreated respective Jurkat cells was determined by flow cytometric analysis. Gray histograms represent isotype staining. B, Relative % suppression of IL-2 production by treated Jurkat cells (as described in Fig. 1B) ± Lck inhibitor (50 ng/ml). ** denotes P < 0.01. Figures represent one set of experiments done in triplicate and repeated at least two additional times with similar results. (TIFF 473 kb)

262_2010_962_MOESM2_ESM.tif

Supplemental Fig. 2 CD8-Lck impacts the susceptibility of OT-I mouse CD8+ T cells to TGF-β-mediated suppression A, Cumulative figure of mean granzyme B production by mouse OT-I CD8+ T cells after 4-hour culture with OVA257–264 peptide (1 μg/ml) ± 50 ng/ml TGF-β ± Lck inhibitor (50 ng/ml or 1 μg/ml, as indicated). B, Graphical representation of relative % suppression by TGF-β from data in A. C, Smad3 levels after 30-minute coculture (as described in A). D, Smad7 levels after coculture (as described in C). E, Expression of Lck by OT-I CD8+ T cells after culture as described in A. F, Expression of TGF-β-RI by OT-I mouse CD8+ T cells after 30-minute culture as described in A. G, Expression of TGF-β-RII as described in F. * denotes P < 0.05, ** P < 0.01, *** P < 0.001. Dashed line represents background staining. Figures represent one set of experiments done in triplicate and repeated at least two additional times with similar results. (TIFF 115 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zloza, A., Jagoda, M.C., Lyons, G.E. et al. CD8 Co-receptor promotes susceptibility of CD8+ T cells to transforming growth factor-β (TGF-β)-mediated suppression. Cancer Immunol Immunother 60, 291–297 (2011). https://doi.org/10.1007/s00262-010-0962-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-010-0962-6

Keywords

Navigation