Skip to main content
Log in

Prognostic value of baseline and interim [18F]FDG PET metabolic parameters in pediatric Hodgkin’s lymphoma

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Background

Hodgkin lymphoma (HL) in pediatric populations has a high survival rate but poses risks for long-term morbidities. Although [18F]fluoro‑2‑deoxy‑2‑d‑glucose positron emission tomography ([18F]FDG PET) scans offer potential for improved risk stratification, the definitive prognostic value of quantitative [18F]FDG PET parameters remains unclear for pediatric HL.

Methods

A single-center, retrospective study included pediatric patients diagnosed with HL between 2016 and 2023 treated according to EuroNet-PHL-C1 and DAL/GPOH-HD protocols. Patients underwent baseline and interim PET/CT scans after two chemotherapy cycles. Event-free survival (EFS) was the primary endpoint, Deauville score was the secondary endpoint. Quantitative [18F]FDG PET parameters included SUVmax, metabolic tumor volume (MTV) and total lesion glycolysis (TLG) that were evaluated using two segmentation methods (SUV 2.5, 41% SUVmax). Survival outcomes were assessed using Cox regression analysis.

Results

A total of 115 patients (50 males, median age 14.2 years) were studied, with a median follow-up period of 35 months. During this period, 16 cases (13.9%) of relapse or progression were noted. Baseline and interim MTV 2.5, MTV 41%, TLG 2.5, and TLG 41%, along with interim SUVmax, were significantly associated with worse EFS and correlated with post-treatment Deauville scores. In multivariable analysis, interim MTV 2.5 > 0 ml (adj. hazard ratio, HR: 3.89, p = 0.009) and interim TLG 41% ≥ 30 g (adj. HR: 7.98, p = 0.006) were independent risk factors for EFS.

Conclusion

Baseline and interim [18F]FDG PET parameters can serve as significant prognostic indicators for EFS and treatment response in pediatric HL. These quantitative measures could enhance individualized, risk-adapted treatment strategies for children and adolescents with HL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article.

Abbreviations

[18F]FDG:

[18F]fluoro‑2‑deoxy‑2‑d‑glucose

AUC:

Area Under Curve

CI:

Confidence Interval

CR:

Complete Remission

CRu:

Complete Remission Unconfirmed

CT:

Computed Tomography

DS:

Deauville Score

EFS:

Event-Free Survival

ESR:

Erythrocyte Sedimentation Rate

HL:

Hodgkin Lymphoma

HR:

Hazard Ratio

IQR:

Interquartile Range

MTV:

Metabolic Tumor Volume

NAC:

Neoadjuvant Chemotherapy

NOS:

Not Otherwise Specified

OS:

Overall Survival

PET:

Positron Emission Tomography

PR:

Partial Remission

PRO:

Progression

RT:

Radiotherapy

ROC:

Receiver Operating Characteristic

SD:

Stable Disease

SUVmax:

Maximum Standardized Uptake Value

SUVmean:

Mean Standardized Uptake Value

SUVpeak:

Peak Standardized Uptake Value

TLG:

Total Lesion Glycolysis

References

  1. Kahn JM, Pei Q, Friedman DL, et al. Survival by age in paediatric and adolescent patients with Hodgkin lymphoma: a retrospective pooled analysis of children’s oncology group trials. Lancet Haematol. 2022;9:e49-57. https://doi.org/10.1016/S2352-3026(21)00349-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Perez-Callejo D, Zurutuza L, Royuela A, et al. Long-term follow up of Hodgkin lymphoma. Oncotarget. 2018;9:11638–45. https://doi.org/10.18632/oncotarget.24392.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kelly KM, Cole PD, Pei Q, et al. Response-adapted therapy for the treatment of children with newly diagnosed high risk Hodgkin lymphoma (AHOD0831): a report from the Children’s Oncology Group. Br J Haematol. 2019;187:39–48. https://doi.org/10.1111/bjh.16014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Van Nimwegen FA, Schaapveld M, Janus CPM, et al. Cardiovascular disease after hodgkin lymphoma treatment 40-year disease risk. JAMA Intern Med. 2015;175:1007–17. https://doi.org/10.1001/jamainternmed.2015.1180.

    Article  PubMed  Google Scholar 

  5. Holmqvist AS, Chen Y, Berano Teh J, et al. Risk of solid subsequent malignant neoplasms after childhood Hodgkin lymphoma—Identification of high-risk populations to guide surveillance: A report from the Late Effects Study Group. Cancer. 2019;125:1373–83. https://doi.org/10.1002/cncr.31807.

    Article  CAS  PubMed  Google Scholar 

  6. Bair SM, Svoboda J. Response-Adapted Treatment Strategies in Hodgkin Lymphoma Using PET Imaging. PET Clin. 2019;14:353–68. https://doi.org/10.1016/j.cpet.2019.03.008.

    Article  PubMed  Google Scholar 

  7. Al-Ibraheem A, Mottaghy FM, Juweid ME. PET/CT in Hodgkin Lymphoma: An Update. Semin Nucl Med. 2023;53:303–19. https://doi.org/10.1053/j.semnuclmed.2022.10.006.

    Article  PubMed  Google Scholar 

  8. Subocz E, Hałka J, Dziuk M. The role of FDG-PET in Hodgkin lymphoma. Wspolczesna Onkol. 2017;21:104–14. https://doi.org/10.5114/wo.2017.68618.

    Article  Google Scholar 

  9. Kanoun S, Rossi C, Casasnovas O. [18F]FDG-PET/CT in hodgkin lymphoma: Current usefulness and perspectives. Cancers (Basel). 2018;10. https://doi.org/10.3390/cancers10050145.

  10. Georgi TW, Kurch L, Hasenclever D, et al. Quantitative assessment of interim PET in Hodgkin lymphoma: An evaluation of the qPET method in adult patients in the RAPID trial. PLoS One. 2020;15. https://doi.org/10.1371/journal.pone.0231027.

  11. Isik EG, Kuyumcu S, Kebudi R, et al. Prediction of outcome in pediatric Hodgkin lymphoma based on interpretation of 18FDG-PET/CT according to ΔSUVmax, Deauville 5-point scale and IHP criteria. Ann Nucl Med. 2017;31:660–8. https://doi.org/10.1007/s12149-017-1196-x.

    Article  CAS  PubMed  Google Scholar 

  12. John J, Oommen R, Hephzibah J, et al. Validation of deauville score for response evaluation in hodgkin’s lymphoma. Indian J Nucl Med. 2023;38:16–22. https://doi.org/10.4103/ijnm.ijnm_102_22.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Castellino SM, Giulino-Roth L, Harker-Murray P, et al. Children’s Oncology Group’s 2023 blueprint for research: Hodgkin lymphoma. Pediatr Blood Cancer. 2023;70:e30580. https://doi.org/10.1002/pbc.30580.

    Article  PubMed  Google Scholar 

  14. Feres CCP, Nunes RF, Teixeira LLC, et al. Baseline total metabolic tumor volume (TMTV) application in Hodgkin lymphoma: a review article. Clin Transl Imaging. 2022;10:273–84. https://doi.org/10.1007/s40336-022-00481-0.

    Article  Google Scholar 

  15. van Heek L, Stuka C, Kaul H, et al. Predictive value of baseline metabolic tumor volume in early-stage favorable Hodgkin Lymphoma – Data from the prospective, multicenter phase III HD16 trial. BMC Cancer. 2022;22:1–8. https://doi.org/10.1186/s12885-022-09758-z.

    Article  CAS  Google Scholar 

  16. Voorhees TJ, Zhao B, Oldan J, et al. Pretherapy metabolic tumor volume is associated with response to CD30 CAR T cells in Hodgkin lymphoma. Blood Adv. 2022;6:1255–63. https://doi.org/10.1182/bloodadvances.2021005385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Albano D, Mazzoletti A, Spallino M, et al. Prognostic role of baseline 18F-FDG PET/CT metabolic parameters in elderly HL: a two-center experience in 123 patients. Ann Hematol. 2020;99:1321–30. https://doi.org/10.1007/s00277-020-04039-w.

    Article  PubMed  Google Scholar 

  18. Herraez I, Bento L, Daumal J, et al. Total lesion glycolysis improves tumor burden evaluation and risk assessment at diagnosis in hodgkin lymphoma. J Clin Med. 2021;10:10. https://doi.org/10.3390/jcm10194396.

    Article  CAS  Google Scholar 

  19. Akhtari M, Milgrom SA, Pinnix CC, et al. Reclassifying patients with early-stage Hodgkin lymphoma based on functional radiographic markers at presentation. Blood. 2018;131:84–94. https://doi.org/10.1182/blood-2017-04-773838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cottereau AS, Versari A, Loft A, et al. Prognostic value of baseline metabolic tumor volume in early-stage Hodgkin lymphoma in the standard arm of the H10 trial. Blood. 2018;131:1456–63. https://doi.org/10.1182/blood-2017-07-795476.

    Article  CAS  PubMed  Google Scholar 

  21. Rogasch JMM, Hundsdoerfer P, Hofheinz F, et al. Pretherapeutic FDG-PET total metabolic tumor volume predicts response to induction therapy in pediatric Hodgkin’s lymphoma. BMC Cancer. 2018;18:1–9. https://doi.org/10.1186/s12885-018-4432-4.

    Article  CAS  Google Scholar 

  22. Milgrom SA, Kim J, Pei Q, et al. Baseline metabolic tumour burden improves risk stratification in Hodgkin lymphoma: A Children’s Oncology Group study. Br J Haematol. 2023;201:1192–9. https://doi.org/10.1111/bjh.18734.

    Article  CAS  PubMed  Google Scholar 

  23. Lopci E, Elia C, Catalfamo B, et al. Prospective Evaluation of Different Methods for Volumetric Analysis on [18F]FDG PET/CT in Pediatric Hodgkin Lymphoma. J Clin Med. 2022;11:6223. https://doi.org/10.3390/jcm11206223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lopci E, Mascarin M. Role of volumetric analyses on [18F]FDG PET/CT in pediatric Hodgkin lymphoma. Expert Rev Hematol. 2023;16:629–31. https://doi.org/10.1080/17474086.2023.2238125.

    Article  CAS  PubMed  Google Scholar 

  25. Milgrom SA, Kim J, Chirindel A, et al. Prognostic value of baseline metabolic tumor volume in children and adolescents with intermediate-risk Hodgkin lymphoma treated with chemo-radiation therapy: FDG-PET parameter analysis in a subgroup from COG AHOD0031. Pediatr Blood Cancer. 2021;68. https://doi.org/10.1002/pbc.29212.

  26. Körholz D, Wallace WH, Landman-Parker J. European Network-Paediatric Hodgkin’s Lymphoma Study Group (EuroNet-PHL). Second International Inter-Group Study for Classical Hodgkin’s Lymphoma in Children and Adolescents 2016;27:1–190.

  27. Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of hodgkin and non-hodgkin lymphoma: The lugano classification. J Clin Oncol. 2014;32:3059–67. https://doi.org/10.1200/JCO.2013.54.8800.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Likar YN, Yadgarov MY, Myakova NV. Predictive value of metabolic parameters of baseline 18 F-fluorodeoxyglucose positron emission tomography/computed tomography for survival rates of children with lymphoma (a meta-analysis and literature review). Pediatr Hematol Immunopathol. 2022;21:145–54. https://doi.org/10.24287/1726-1708-2022-21-1-145-154.

    Article  Google Scholar 

  29. Im HJ, Bradshaw T, Solaiyappan M, et al. Current Methods to Define Metabolic Tumor Volume in Positron Emission Tomography: Which One is Better? Nucl Med Mol Imaging. 2010;2018(52):5–15. https://doi.org/10.1007/s13139-017-0493-6.

    Article  Google Scholar 

  30. Driessen J, Zwezerijnen GJC, Schöder H, et al. The Impact of Semiautomatic Segmentation Methods on Metabolic Tumor Volume, Intensity, and Dissemination Radiomics in 18F-FDG PET Scans of Patients with Classical Hodgkin Lymphoma. J Nucl Med. 2022;63:1424–30. https://doi.org/10.2967/jnumed.121.263067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

M.Y., N.M. and Y.L. contributed to the design and implementation of the research, M.Y., M.D., G.S. collected the data, M.D., C.K., Y.L. analyzed images, M.Y., Y.L. preformed the analysis of the results, M.Y., M.D., E.K., N.M., Y.L. wrote of the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Mikhail Ya. Yadgarov.

Ethics declarations

Ethics approval and consent to participate

This is a retrospective cohort study. The NMRCPHOI Independent Ethics Committee has confirmed that no ethical approval is required. All parents or persons having custody signed an informed consent for therapy, diagnostic procedures and processing of patients' personal data.

Consent for publication

Not applicable.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 109 KB)

Supplementary file2 (DOCX 32 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadgarov, M.Y., Dunaykin, M.M., Shestopalov, G.I. et al. Prognostic value of baseline and interim [18F]FDG PET metabolic parameters in pediatric Hodgkin’s lymphoma. Eur J Nucl Med Mol Imaging (2024). https://doi.org/10.1007/s00259-024-06643-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00259-024-06643-8

Keywords

Navigation