Skip to main content
Log in

Synthesis, radiolabeling, and pre-clinical evaluation of [44Sc]Sc-AAZTA conjugate PSMA inhibitor, a new tracer for high-efficiency imaging of prostate cancer

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The aim of this work was to demonstrate the suitability of AAZTA conjugated to PSMA inhibitor (B28110) labeled with scandium-44 as a new PET tracer for diagnostic imaging of prostate cancer.

Background

Nowadays, scandium-44 has received significant attention as a potential radionuclide with favorable characteristics for PET applications. A polyaminopolycarboxylate heptadentate ligand based on a 1,4-diazepine scaffold (AAZTA) has been thoroughly studied as chelator for Gd3+ ions for MRI applications. The excellent results of the equilibrium, kinetic, and labeling studies led to a preliminary assessment of the in vitro and in vivo behavior of [44Sc][Sc-(AAZTA)] and two derivatives, i.e., [44Sc][Sc (CNAAZTA-BSA)] and [44Sc][Sc (CNAAZTA-cRGDfK)].

Results

B28110 was synthesized by hybrid approach, combining solid-phase peptide synthesis (SPPS) and solution chemistry to obtain high purity (97%) product with an overall yield of 9%. Subsequently, the radioactive labeling was performed with scandium-44 produced from natural calcium target in cyclotron, in good radiochemical yields (RCY) under mild condition (pH 4, 298 K). Stability study in human plasma showed good RCP% of [44Sc]Sc-B28110 up to 24 h (94.32%). In vivo PET/MRI imaging on LNCaP tumor-bearing mice showed high tracer accumulation in the tumor regions as early as 20 min post-injection. Ex vivo biodistribution studies confirmed that the accumulation of 44Sc-PSMA-617 was two-fold lower than that of the radiolabeled B28110 probes.

Conclusions

This work demonstrated the suitability of B28110 for the complexation with scandium-44 at room temperature and the high performance of the resulting new tracer based on AAZTA chelator for the diagnosis of prostate cancer using PET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29. https://doi.org/10.3322/caac.21208.

    Article  PubMed  Google Scholar 

  2. Sam S, Chang MD. Overview of prostate-specific membrane antigen. Rev Urol. 2004;6(Suppl 10):S13–8.

    Google Scholar 

  3. Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res. 1997;3:81–5.

    CAS  Google Scholar 

  4. Kiess A, Minn I, Chen Y, Hobbs R, Sgouros G, Mease RC, et al. Auger radiopharmaceutical therapy targeting prostate-specific membrane antigen. J Nucl Med. 2015;56:1401–7. https://doi.org/10.2967/jnumed.115.155929.

    Article  CAS  PubMed  Google Scholar 

  5. Maurer T, Eiber M, Schwaiger M, Gschwend JE. Current use of PSMA-PET in prostate cancer management. Nat Rev Urol. 2016;13:226–35. https://doi.org/10.1038/nrurol.2016.26.

    Article  CAS  PubMed  Google Scholar 

  6. Maresca KP, Hillier SM, Femia FJ, Keith D, Barone C, Joyal JL, et al. A series of halogenated heterodimeric inhibitors of prostate specific membrane antigen (PSMA) as radiolabeled probes for targeting prostate cancer. J Med Chem. 2009;52:347–57. https://doi.org/10.1021/jm800994j.

    Article  CAS  PubMed  Google Scholar 

  7. Benešová M, Bauder-Wüst U, Schäfer M, Klika KD, Mier W, Haberkorn U, et al. Linker modification strategies to control the prostate-specific membrane antigen (PSMA)-targeting and pharmacokinetic properties of DOTA-conjugated PSMA inhibitors. J Med Chem. 2016;59:1761–75. https://doi.org/10.1021/acs.jmedchem.5b01210.

    Article  CAS  PubMed  Google Scholar 

  8. Radchenko V, Engle JW, Medvedev DG, Maassen JM, Naranjo CM, Unc GA, et al. Proton-induced production and radiochemical isolation of. Nucl Med Biol. 2017;50:25–32. https://doi.org/10.1016/j.nucmedbio.2017.03.006.

    Article  CAS  PubMed  Google Scholar 

  9. Chaple IF, Lapi SE. Production and use of the first-row transition metal PET radionuclides. J Nucl Med. 2018;59:1655–9. https://doi.org/10.2967/jnumed.118.213264.

    Article  CAS  PubMed  Google Scholar 

  10. Price EW, Orvig C. Matching chelators to radiometals for radiopharmaceuticals. Chem Soc Rev. 2014;43:260–90. https://doi.org/10.1039/c3cs60304k.

    Article  CAS  PubMed  Google Scholar 

  11. Velikyan I, Maecke H, Langstrom B. Convenient preparation of 68Ga-based PET-radiopharmaceuticals at room temperature. Bioconjug Chem. 2008;19:569–73. https://doi.org/10.1021/bc700341x.

    Article  CAS  PubMed  Google Scholar 

  12. Pfister J, Summer D, Rangger C, Petrik M, von Guggenberg E, Minazzi P, et al. Influence of a novel, versatile bifunctional chelator on theranostic properties of a minigastrin analogue. EJNMMI Res. 2015;5:74. https://doi.org/10.1186/s13550-015-0154-7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Domnanich KA, Müller C, Farkas R, Schmid RM, Ponsard B, Schibli R, et al. Sc for labeling of DOTA- and NODAGA-functionalized peptides: preclinical in vitro and in vivo investigations. EJNMMI Radiopharm Chem. 2017;1:8. https://doi.org/10.1186/s41181-016-0013-5.

    Article  PubMed  Google Scholar 

  14. Gugliotta G, Botta M, Giovenzana GB, Tei L. Fast and easy access to efficient bifunctional chelators for MRI applications. Bioorg Med Chem Lett. 2009;19:3442–4. https://doi.org/10.1016/j.bmcl.2009.05.024.

    Article  CAS  PubMed  Google Scholar 

  15. Zsolt B, Fulvio U, Alessandro M, Giovanni GB, Camilla C, Anett T, et al. Equilibrium, kinetic and structural studies of AAZTA complexes with Ga3+, In3+ and Cu2+. Eur J Inorg Chem. 2013:147–62. https://doi.org/10.1002/ejic.201201108.

  16. Manzoni L, Belvisi L, Arosio D, Bartolomeo MP, Bianchi A, Brioschi C, et al. Synthesis of Gd and (68)Ga complexes in conjugation with a conformationally optimized RGD sequence as potential MRI and PET tumor-imaging probes. ChemMedChem. 2012;7:1084–93. https://doi.org/10.1002/cmdc.201200043.

    Article  CAS  PubMed  Google Scholar 

  17. Nagy G, Szikra D, Trencsényi G, Fekete A, Garai I, Giani AM, et al. AAZTA: an ideal chelating agent for the development of. Angew Chem Int Ed Eng. 2017;56:2118–22. https://doi.org/10.1002/anie.201611207.

    Article  CAS  Google Scholar 

  18. Faustino-Rocha A, Oliveira PA, Pinho-Oliveira J, Teixeira-Guedes C, Soares-Maia R, da Costa RG, et al. Estimation of rat mammary tumor volume using caliper and ultrasonography measurements. Lab Anim. 2013;42(6):217–24. https://doi.org/10.1038/laban.254.

    Article  Google Scholar 

  19. Bunka M, Müller C, Vermeulen C, Haller S, Türler A, Schibli R, et al. Imaging quality of (44)Sc in comparison with five other PET radionuclides using Derenzo phantoms and preclinical PET. Appl Radiat Isot. 2016;110:129–33. https://doi.org/10.1016/j.apradiso.2016.01.006.

    Article  CAS  PubMed  Google Scholar 

  20. Chakravarty R, Goel S, Valdovinos HF, Hernandez R, Hong H, Nickles RJ, et al. Matching the decay half-life with the biological half-life: ImmunoPET imaging with (44)Sc-labeled cetuximab Fab fragment. Bioconjug Chem. 2014;25:2197–204. https://doi.org/10.1021/bc500415x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Conti M, Eriksson L. Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Phys. 2016;3:8. https://doi.org/10.1186/s40658-016-0144-5.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gorges TM, Riethdorf S, von Ahsen O, Nastał YP, Röck K, Boede M, et al. Heterogeneous PSMA expression on circulating tumor cells: a potential basis for stratification and monitoring of PSMA-directed therapies in prostate cancer. Oncotarget. 2016;7:34930–41. https://doi.org/10.18632/oncotarget.9004.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Müller C, Domnanich KA, Umbricht CA, van der Meulen NP. Scandium and terbium radionuclides for radiotheranostics: current state of development towards clinical application. Br J Radiol. 2018;91:20180074. https://doi.org/10.1259/bjr.20180074.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ray Banerjee S, Chen Z, Pullambhatla M, Lisok A, Chen J, Mease RC, et al. Preclinical comparative study of (68)Ga-labeled DOTA, NOTA, and HBED-CC chelated radiotracers for targeting PSMA. Bioconjug Chem. 2016;27:1447–55. https://doi.org/10.1021/acs.bioconjchem.5b00679.

    Article  CAS  PubMed  Google Scholar 

  25. Nagy G, Dénes N, Kis A, Szabó JP, Berényi E, Garai I, et al. Preclinical evaluation of melanocortin-1 receptor (MC1-R) specific. Eur J Pharm Sci. 2017;106:336–44. https://doi.org/10.1016/j.ejps.2017.06.026.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Lorenzo Tei for supporting synthesis activity.

Funding

The research was totally supported by Bracco Imaging SpA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ghiani.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval and informed consent

All procedures performed in studies involving animals were in accordance with the ethical standards of the Hungarian Laws and regulations of the European Union (Permission numbers: animal house: XXVIII-KÁT/2015, ethical license for the study: 19/2017/DE MÁB). Approval for this study was granted by the Scientific Ethics Council of Animal Experiments.

Consent to participate

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Preclinical Imaging

Supplementary Information

ESM 1

(DOCX 509 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghiani, S., Hawala, I., Szikra, D. et al. Synthesis, radiolabeling, and pre-clinical evaluation of [44Sc]Sc-AAZTA conjugate PSMA inhibitor, a new tracer for high-efficiency imaging of prostate cancer. Eur J Nucl Med Mol Imaging 48, 2351–2362 (2021). https://doi.org/10.1007/s00259-020-05130-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-020-05130-0

Keywords

Navigation