Skip to main content

Advertisement

Log in

18F-FDG PET/CT radiomic predictors of pathologic complete response (pCR) to neoadjuvant chemotherapy in breast cancer patients

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) is commonly accepted as the gold standard to assess outcome after NAC in breast cancer patients. 18F-Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) has unique value in tumor staging, predicting prognosis, and evaluating treatment response. Our aim was to determine if we could identify radiomic predictors from PET/CT in breast cancer patient therapeutic efficacy prior to NAC.

Methods

This retrospective study included 100 breast cancer patients who received NAC; there were 2210 PET/CT radiomic features extracted. Unsupervised and supervised machine learning models were used to identify the prognostic radiomic predictors through the following: (1) selection of the significant (p < 0.05) imaging features from consensus clustering and the Wilcoxon signed-rank test; (2) selection of the most discriminative features via univariate random forest (Uni-RF) and the Pearson correlation matrix (PCM); and (3) determination of the most predictive features from a traversal feature selection (TFS) based on a multivariate random forest (RF). The prediction model was constructed with RF and then validated with 10-fold cross-validation for 30 times and then independently validated. The performance of the radiomic predictors was measured in terms of area under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV).

Results

The PET/CT radiomic predictors achieved a prediction accuracy of 0.857 (AUC = 0.844) on the training split set and 0.767 (AUC = 0.722) on the independent validation set. When age was incorporated, the accuracy for the split set increased to 0.857 (AUC = 0.958) and 0.8 (AUC = 0.73) for the independent validation set and both outperformed the clinical prediction model. We also found a close association between the radiomic features, receptor expression, and tumor T stage.

Conclusion

Radiomic predictors from pre-treatment PET/CT scans when combined with patient age were able to predict pCR after NAC. We suggest that these data will be valuable for patient management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hong W, Dong E. The past, present and future of breast cancer research in China. Cancer Lett. 2014;351:1–5. https://doi.org/10.1016/j.canlet.2014.04.007.

    Article  CAS  PubMed  Google Scholar 

  2. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–32. https://doi.org/10.3322/caac.21338.

    Article  PubMed  Google Scholar 

  3. Gradishar WJ, Anderson BO, Balassanian R, Blair SL, Burstein HJ, Cyr A, et al. NCCN guidelines insights breast cancer, version 1.2016. J Natl Compr Cancer Netw JNCCN. 2015;13:1475–85.

    Article  CAS  Google Scholar 

  4. Kong X, Moran MS, Zhang N, Haffty B, Yang Q. Meta-analysis confirms achieving pathological complete response after neoadjuvant chemotherapy predicts favourable prognosis for breast cancer patients. Eur J Cancer. 2011;47:2084–90. https://doi.org/10.1016/j.ejca.2011.06.014.

    Article  PubMed  Google Scholar 

  5. Caudle AS, Gonzalez-Angulo AM, Hunt KK, Liu P, Pusztai L, Symmans WF, et al. Predictors of tumor progression during neoadjuvant chemotherapy in breast cancer. J Clin Oncol. 2010;28:1821–8. https://doi.org/10.1200/JCO.2009.25.3286.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chu W, Jin W, Liu D, Wang J, Geng C, Chen L, et al. Diffusion-weighted imaging in identifying breast cancer pathological response to neoadjuvant chemotherapy: a meta-analysis. Oncotarget. 2018;9:7088–100. https://doi.org/10.18632/oncotarget.23195.

    Article  PubMed  Google Scholar 

  7. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47. https://doi.org/10.1016/j.ejca.2008.10.026.

    Article  CAS  PubMed  Google Scholar 

  8. Shang J, Ling X, Zhang L, Tang Y, Xiao Z, Cheng Y, et al. Comparison of RECIST, EORTC criteria and PERCIST for evaluation of early response to chemotherapy in patients with non-small-cell lung cancer. Eur J Nucl Med Mol Imaging. 2016;43:1945–53. https://doi.org/10.1007/s00259-016-3420-7.

    Article  CAS  PubMed  Google Scholar 

  9. Fuster D, Duch J, Paredes P, Velasco M, Munoz M, Santamaria G, et al. Preoperative staging of large primary breast cancer with [18F]fluorodeoxyglucose positron emission tomography/computed tomography compared with conventional imaging procedures. J Clin Oncol. 2008;26:4746–51. https://doi.org/10.1200/JCO.2008.17.1496.

    Article  PubMed  Google Scholar 

  10. Groheux D, Biard L, Giacchetti S, Teixeira L, Hindie E, Cuvier C, et al. (1)(8)F-FDG PET/CT for the early evaluation of response to neoadjuvant treatment in triple-negative breast cancer: influence of the chemotherapy regimen. J Nucl Med. 2016;57:536–43. https://doi.org/10.2967/jnumed.115.163907.

    Article  CAS  PubMed  Google Scholar 

  11. Groheux D, Sanna A, Majdoub M, de Cremoux P, Giacchetti S, Teixeira L, et al. Baseline tumor 18F-FDG uptake and modifications after 2 cycles of neoadjuvant chemotherapy are prognostic of outcome in ER+/HER2- breast cancer. J Nucl Med. 2015;56:824–31. https://doi.org/10.2967/jnumed.115.154138.

    Article  CAS  PubMed  Google Scholar 

  12. Groheux D, Mankoff D, Espie M, Hindie E. (1)(8)F-FDG PET/CT in the early prediction of pathological response in aggressive subtypes of breast cancer: review of the literature and recommendations for use in clinical trials. Eur J Nucl Med Mol Imaging. 2016;43:983–93. https://doi.org/10.1007/s00259-015-3295-z.

    Article  CAS  PubMed  Google Scholar 

  13. Hatt M, Tixier F, Visvikis D, Cheze Le Rest C. Radiomics in PET/CT: more than meets the eye? J Nucl Med. 2017;58:365–6. https://doi.org/10.2967/jnumed.116.184655.

    Article  PubMed  Google Scholar 

  14. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006. https://doi.org/10.1038/ncomms5006.

    Article  CAS  PubMed  Google Scholar 

  15. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441–6. https://doi.org/10.1016/j.ejca.2011.11.036.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yip SS, Aerts HJ. Applications and limitations of radiomics. Phys Med Biol. 2016;61:R150–66. https://doi.org/10.1088/0031-9155/61/13/R150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kirienko M, Cozzi L, Antunovic L, Lozza L, Fogliata A, Voulaz E, et al. Prediction of disease-free survival by the PET/CT radiomic signature in non-small cell lung cancer patients undergoing surgery. Eur J Nucl Med Mol Imaging. 2018;45:207–17. https://doi.org/10.1007/s00259-017-3837-7.

    Article  PubMed  Google Scholar 

  18. Ha S, Park S, Bang JI, Kim EK, Lee HY. Metabolic radiomics for pretreatment (18)F-FDG PET/CT to characterize locally advanced breast cancer: histopathologic characteristics, response to neoadjuvant chemotherapy, and prognosis. Sci Rep. 2017;7:1556. https://doi.org/10.1038/s41598-017-01524-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goetz MP, Gradishar WJ, Anderson BO, Abraham J, Aft R, Allison KH, et al. NCCN guidelines insights: breast cancer, version 3.2018. J Natl Compr Cancer Netw. 2019;17:118–26. https://doi.org/10.6004/jnccn.2019.0009.

    Article  Google Scholar 

  20. Chinese Anti-Cancer Association CoBC. Breast cancer diagnosis and treatment guidelines of China Anti Cancer Association(version 2019). China Oncol. 2019;29:609–80.

    Google Scholar 

  21. Kim HI, Kim K, Park SY, Choe JH, Kim JH, Kim JS, et al. Refining the eighth edition AJCC TNM classification and prognostic groups for papillary thyroid cancer with lateral nodal metastasis. Oral Oncol. 2018;78:80–6. https://doi.org/10.1016/j.oraloncology.2018.01.021.

    Article  PubMed  Google Scholar 

  22. Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, et al. American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol. 2010;28:2784–95. https://doi.org/10.1200/JCO.2009.25.6529.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31:3997–4013. https://doi.org/10.1200/JCO.2013.50.9984.

    Article  PubMed  Google Scholar 

  24. Biau G, Scornet E. A random forest guided tour. Test. 2016;25:197–227.

    Article  Google Scholar 

  25. Zhu L, Kolesov I, Gao Y, Kikinis R, Tannenbaum A. An effective interactive medical image segmentation method using fast growcut. MICCAI workshop on interactive medical image computing; 2014.

  26. Siavashpour Z, Aghamiri MR, Jaberi R, Dehghan-Manshadi HR, Sedaghat M, Kirisits C. Evaluating the utility of “3D Slicer” as a fast and independent tool to assess intrafractional organ dose variations in gynecological brachytherapy. Brachytherapy. 2016;15:514–23. https://doi.org/10.1016/j.brachy.2016.03.009.

    Article  PubMed  Google Scholar 

  27. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, et al. 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging. 2012;30:1323–41. https://doi.org/10.1016/j.mri.2012.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zwanenburg A, Leger S, Vallières M, Löck S. Image biomarker standardisation initiative. arXiv preprint arXiv:161207003. 2016.

  29. Van Griethuysen JJ, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, et al. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017;77:e104–e7.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ribeiro MT, Singh S, Guestrin C. Why should i trust you?: explaining the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining: ACM; 2016. p. 1135–44.

  31. Antunovic L, De Sanctis R, Cozzi L, Kirienko M, Sagona A, Torrisi R, et al. PET/CT radiomics in breast cancer: promising tool for prediction of pathological response to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging. 2019. https://doi.org/10.1007/s00259-019-04313-8.

  32. Ogino K, Nakajima M, Kakuta M, Hayashi M, Yamaguchi S, Tsuchioka T, et al. Utility of FDG-PET/CT in the evaluation of the response of locally advanced breast cancer to neoadjuvant chemotherapy. Int Surg. 2014;99:309–18. https://doi.org/10.9738/INTSURG-D-13-00044.1.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Farrugia MK, Wen S, Jacobson GM, Salkeni MA. Prognostic factors in breast cancer patients evaluated by positron-emission tomography/computed tomography before neoadjuvant chemotherapy. World J Nucl Med. 2018;17:275–80. https://doi.org/10.4103/wjnm.WJNM_84_17.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schmitz AMT, Teixeira SC, Pengel KE, Loo CE, Vogel WV, Wesseling J, et al. Monitoring tumor response to neoadjuvant chemotherapy using MRI and 18F-FDG PET/CT in breast cancer subtypes. PLoS One. 2017;12:e0176782. https://doi.org/10.1371/journal.pone.0176782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Spring L, Greenup R, Niemierko A, Schapira L, Haddad S, Jimenez R, et al. Pathologic complete response after neoadjuvant chemotherapy and long-term outcomes among young women with breast cancer. J Natl Compr Cancer Netw. 2017;15:1216–23. https://doi.org/10.6004/jnccn.2017.0158.

    Article  Google Scholar 

  36. Collins LC, Marotti JD, Gelber S, Cole K, Ruddy K, Kereakoglow S, et al. Pathologic features and molecular phenotype by patient age in a large cohort of young women with breast cancer. Breast Cancer Res Treat. 2012;131:1061–6. https://doi.org/10.1007/s10549-011-1872-9.

    Article  CAS  PubMed  Google Scholar 

  37. De Lima VF, Silva TB, Da Costa Vieira RA, Da Costa AM, Scapulatempo C, Fregnani JH, et al. Retrospective analysis of breast cancer prognosis among young and older women in a Brazilian cohort of 738 patients, 1985-2002. Oncol Lett. 2016;12:4911–24. https://doi.org/10.3892/ol.2016.5360.

    Article  Google Scholar 

  38. Ajmani GS, James TA, Kantor O, Wang CH, Yao KA. The impact of facility volume on rates of pathologic complete response to neoadjuvant chemotherapy used in breast cancer. Ann Surg Oncol. 2017;24:3157–66. https://doi.org/10.1245/s10434-017-5969-1.

    Article  PubMed  Google Scholar 

  39. Haque W, Verma V, Hatch S, Suzanne Klimberg V, Brian Butler E, Teh BS. Response rates and pathologic complete response by breast cancer molecular subtype following neoadjuvant chemotherapy. Breast Cancer Res Treat. 2018;170:559–67. https://doi.org/10.1007/s10549-018-4801-3.

    Article  CAS  PubMed  Google Scholar 

  40. Huang SY, Franc BL, Harnish RJ, Liu G, Mitra D, Copeland TP, et al. Exploration of PET and MRI radiomic features for decoding breast cancer phenotypes and prognosis. NPJ Breast Cancer. 2018;4:24. https://doi.org/10.1038/s41523-018-0078-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Henderson S, Purdie C, Michie C, Evans A, Lerski R, Johnston M, et al. Interim heterogeneity changes measured using entropy texture features on T2-weighted MRI at 3.0 T are associated with pathological response to neoadjuvant chemotherapy in primary breast cancer. Eur Radiol. 2017;27:4602–11. https://doi.org/10.1007/s00330-017-4850-8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chen R, Ye Y, Yang C, Peng Y, Zong B, Qu F, et al. Assessment of the predictive role of pretreatment Ki-67 and Ki-67 changes in breast cancer patients receiving neoadjuvant chemotherapy according to the molecular classification: a retrospective study of 1010 patients. Breast Cancer Res Treat. 2018;170:35–43. https://doi.org/10.1007/s10549-018-4730-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schlotter CM, Tietze L, Vogt U, Heinsen CV, Hahn A. Ki67 and lymphocytes in the pretherapeutic core biopsy of primary invasive breast cancer: positive markers of therapy response prediction and superior survival. Horm Mol Biol Clin Invest. 2017;32. https://doi.org/10.1515/hmbci-2017-0022.

  44. Ellsworth RE, Blackburn HL, Shriver CD, Soon-Shiong P, Ellsworth DL. Molecular heterogeneity in breast cancer: state of the science and implications for patient care. Semin Cell Dev Biol. 2017;64:65–72. https://doi.org/10.1016/j.semcdb.2016.08.025.

    Article  CAS  PubMed  Google Scholar 

  45. Woolson RF, Bean JA, Rojas PB. Sample size for case-control studies using Cochran’s statistic. Biometrics. 1986;42:927–32.

    Article  CAS  PubMed  Google Scholar 

  46. Sollini M, Cozzi L, Antunovic L, Chiti A, Kirienko M. PET radiomics in NSCLC: state of the art and a proposal for harmonization of methodology. Sci Rep. 2017;7:358. https://doi.org/10.1038/s41598-017-00426-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278:563–77. https://doi.org/10.1148/radiol.2015151169.

    Article  PubMed  Google Scholar 

  48. Chalkidou A, O’Doherty MJ, Marsden PK. False discovery rates in PET and CT studies with texture features: a systematic review. PLoS One. 2015;10:e0124165. https://doi.org/10.1371/journal.pone.0124165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81771861, 81830052, 81530053) and Shanghai Scientific and Technological Innovation Program (No. 18410711200, 16DZ0503700).

Author information

Authors and Affiliations

Authors

Contributions

PL, XW, and CR X conceptualized the study and provided the overall design of the experiments and contributed equally to the experiments. PL L, XW, CX, and MJF wrote the manuscript. PL and CL carried out tumor VOI mapping. XW, CZ, and CX performed the radiomics analysis and model building. MJF, DF, and LW edited the manuscript. SL S and G H supervised the study. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Shaoli Song or Gang Huang.

Ethics declarations

Ethics approval and consent to participate

This retrospective study was approved by the Ethics Committee of Fudan University Shanghai Cancer Center; the study was carried out in compliance with the International guidelines for human research protection of the Declaration of Helsinki and International Conference on Harmonization in Good Clinical Practical (ICH-GCP).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Advanced Image Analyses (Radiomics and Artificial Intelligence)

Electronic supplementary material

ESM 1

(DOCX 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Wang, X., Xu, C. et al. 18F-FDG PET/CT radiomic predictors of pathologic complete response (pCR) to neoadjuvant chemotherapy in breast cancer patients. Eur J Nucl Med Mol Imaging 47, 1116–1126 (2020). https://doi.org/10.1007/s00259-020-04684-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-020-04684-3

Keywords

Navigation