Skip to main content

Advertisement

Log in

Relationship between functional imaging and immunohistochemical markers and prediction of breast cancer subtype: a PET/MRI study

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to determine if functional parameters extracted from the hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) correlate with the immunohistochemical markers of breast cancer (BC) lesions, to assess their ability to predict BC subtype.

Methods

This prospective study was approved by the institution’s Ethics Committee, and all patients provided written informed consent. A total of 50 BC patients at diagnosis underwent PET/MRI before pharmacological and surgical treatment. For each primary lesion, the following data were extracted: morphological data including tumour-node-metastasis stage and lesion size; apparent diffusion coefficient (ADC); perfusion data including forward volume transfer constant (Ktrans), reverse efflux volume transfer constant (Kep) and extravascular extracellular space volume (Ve); and metabolic data including standardized uptake value (SUV), lean body mass (SUL), metabolic tumour volume and total lesion glycolysis. Immunohistochemical reports were used to determine receptor status (oestrogen, progesterone, and human epidermal growth factor receptor 2), cellular differentiation status (grade), and proliferation index (Ki67) of the tumour lesions. Correlation studies (Mann–Whitney U test and Spearman’s test), receiver operating characteristic (ROC) curve analysis, and multivariate analysis were performed.

Results

Association studies were performed to assess the correlations between imaging and histological prognostic markers of BC. Imaging biomarkers, which significantly correlated with biological markers, were selected to perform ROC curve analysis to determine their ability to discriminate among BC subtypes. SUVmax, SUVmean and SUL were able to discriminate between luminal A and luminal B subtypes (AUCSUVmean = 0.799; AUCSUVmax = 0.833; AUCSUL = 0.813) and between luminal A and nonluminal subtypes (AUCSUVmean = 0.926; AUCSUVmax = 0.917; AUCSUL = 0.945), and the lowest SUV and SUL values were associated with the luminal A subtype. Kepmax was able to discriminate between luminal A and luminal B subtypes (AUC = 0.779), and its highest values were associated with the luminal B subtype. Ktransmax (AUC = 0.881) was able to discriminate between luminal A and nonluminal subtypes, and the highest perfusion values were associated with the nonluminal subtype. In addition, ADC (AUC = 0.877) was able to discriminate between luminal B and nonluminal subtypes, and the lowest ADCmean values were associated with the luminal B subtype. Multivariate analysis was performed to develop a prognostic model, and the best predictive model included Ktransmax and SUVmax parameters.

Conclusion

Using multivariate analysis of both PET and MRI parameters, a prognostic model including Ktransmax and SUVmax was able to predict the tumour subtype in 38 of 49 patients (77.6%, p < 0.001), with higher accuracy for the luminal B subtype (86.2%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thurlimann B, et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol. 2013;24:2206–23. https://doi.org/10.1093/annonc/mdt303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Ueda S, Tsuda H, Asakawa H, Shigekawa T, Fukatsu K, Kondo N, et al. Clinicopathological and prognostic relevance of uptake level using F-18-fluorodeoxyglucose positron emission tomography/computed tomography fusion imaging (F-18-FDG PET/CT) in primary breast cancer. Jpn J Clin Oncol. 2008;38:250–8. https://doi.org/10.1093/jjco/hyn019.

    Article  PubMed  Google Scholar 

  3. Osborne JR, Port E, Gonen M, Doane AS, Yeung H, Gerald W, et al. F-18-FDG PET of locally invasive breast cancer and association of estrogen receptor status with standardized uptake value: microarray and immunohistochemical analysis. J Nucl Med. 2010;51:543–50. https://doi.org/10.2967/jnumed.108.060459.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Heudel P, Cimarelli S, Montella A, Bouteille C, Mognetti T. Value of PET-FDG in primary breast cancer based on histopathological and immunohistochemical prognostic factors. Int J Clin Oncol. 2010;15:588–93. https://doi.org/10.1007/s10147-010-0120-3.

    Article  PubMed  Google Scholar 

  5. Groheux D, Giacchetti S, Moretti JL, Porcher R, Espie M, Lehmann-Che J, et al. Correlation of high F-18-FDG uptake to clinical, pathological and biological prognostic factors in breast cancer. Eur J Nucl Med Mol Imaging. 2011;38:426–35. https://doi.org/10.1007/s00259-010-1640-9.

    Article  PubMed  Google Scholar 

  6. Wang CL, MacDonald LR, Rogers JV, Aravkin A, Haseley DR, Beatty JD. Positron emission mammography: correlation of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 status and F-18-FDG. AJR Am J Roentgenol. 2011;197:W247–55. https://doi.org/10.2214/ajr.11.6478.

    Article  PubMed  Google Scholar 

  7. Koolen BB, Peeters M, Wesseling J, Lips EH, Vogel WV, Aukema TS, et al. Association of primary tumour FDG uptake with clinical, histopathological and molecular characteristics in breast cancer patients scheduled for neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging. 2012;39:1830–8. https://doi.org/10.1007/s00259-012-2211-z.

    Article  PubMed  CAS  Google Scholar 

  8. Koo HR, Park JS, Kang KW, Cho N, Chang JM, Bae MS, et al. F-18-FDG uptake in breast cancer correlates with immunohistochemically defined subtypes. Eur Radiol. 2014;24:610–8. https://doi.org/10.1007/s00330-013-3037-1.

    Article  PubMed  Google Scholar 

  9. Vicente AMG, Castrejon AS, Martin AL, Lopez-Muniz IC, Madero VM, Sanchez MDM, et al. Molecular subtypes of breast cancer: metabolic correlation with F-18-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2013;40:1304–11. https://doi.org/10.1007/s00259-013-2418-7.

    Article  CAS  Google Scholar 

  10. Kitajima K, Fukushima K, Miyoshi Y, Nishimukai A, Hirota S, Igarashi Y, et al. Association between F-18-FDG uptake and molecular subtype of breast cancer. Eur J Nucl Med Mol Imaging. 2015;42:1371–7. https://doi.org/10.1007/s00259-015-3070-1.

    Article  PubMed  CAS  Google Scholar 

  11. Aogi K, Kadoya T, Sugawara Y, Kiyoto S, Shigematsu H, Masumoto N, et al. Utility of F-18 FDG-PET/CT for predicting prognosis of luminal-type breast cancer. Breast Cancer Res Treat. 2015;150:209–17. https://doi.org/10.1007/s10549-015-3303-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Chen JH, Baek HM, Nalcioglu O, Su MY. Estrogen receptor and breast MR imaging features: a correlation study. J Magn Reson Imaging. 2008;27:825–33. https://doi.org/10.1002/jmri.21330.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cipolla V, Santucci D, Guerrieri D, Drudi FM, Meggiorini ML, de Felice C. Correlation between 3T apparent diffusion coefficient values and grading of invasive breast carcinoma. Eur J Radiol. 2014;83:2144–50. https://doi.org/10.1016/j.ejrad.2014.09.015.

    Article  PubMed  Google Scholar 

  14. Kim JY, Kim SH, Kim YJ, Kang BJ, An YY, Lee AW, et al. Enhancement parameters on dynamic contrast enhanced breast MRI: do they correlate with prognostic factors and subtypes of breast cancers? Magn Reson Imaging. 2015;33:72–80. https://doi.org/10.1016/j.mri.2014.08.034.

    Article  PubMed  CAS  Google Scholar 

  15. Mori N, Ota H, Mugikura S, Takasawa C, Ishida T, Watanabe G, et al. Luminal-type breast cancer: correlation of apparent diffusion coefficients with the Ki-67 labeling index. Radiology. 2015;274:66–73. https://doi.org/10.1148/radiol.14140283.

    Article  PubMed  Google Scholar 

  16. Park SH, Choi HY, Hahn SY. Correlations between apparent diffusion coefficient values of invasive ductal carcinoma and pathologic factors on diffusion-weighted MRI at 3.0 tesla. J Magn Reson Imaging. 2015;41:175–82. https://doi.org/10.1002/jmri.24519.

    Article  PubMed  CAS  Google Scholar 

  17. Sharma U, Sah RG, Agarwal K, Parshad R, Seenu V, Mathur SR, et al. Potential of diffusion-weighted imaging in the characterization of malignant, benign, and healthy breast tissues and molecular subtypes of breast cancer. Front Oncol. 2016;6:126. https://doi.org/10.3389/fonc.2016.00126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Shin HJ, Park JY, Shin KC, Kim HH, Cha JH, Chae EY, et al. Characterization of tumor and adjacent peritumoral stroma in patients with breast cancer using high-resolution diffusion-weighted imaging: correlation with pathologic biomarkers. Eur J Radiol. 2016;85:1004–11. https://doi.org/10.1016/j.ejrad.2016.02.017.

    Article  PubMed  Google Scholar 

  19. Uematsu T, Kasami M, Yuen S. Triple-negative breast cancer: correlation between MR imaging and pathologic findings. Radiology. 2009;250:638–47. https://doi.org/10.1148/radiol.2503081054.

    Article  PubMed  Google Scholar 

  20. Shin JK, Kim JY. Dynamic contrast-enhanced and diffusion-weighted MRI of estrogen receptor-positive invasive breast cancers: associations between quantitative MR parameters and Ki-67 proliferation status. J Magn Reson Imaging. 2017;45:94–102. https://doi.org/10.1002/jmri.25348.

    Article  PubMed  Google Scholar 

  21. Wu MX, Ma J. Association between imaging characteristics and different molecular subtypes of breast cancer. Acad Radiol. 2017;24:426–34. https://doi.org/10.1016/j.acra.2016.11.012.

    Article  PubMed  Google Scholar 

  22. Miyake KK, Nakamoto Y, Kanao S, Tanaka S, Sugie T, Mikami Y, et al. Diagnostic value of F-18-FDG PET/CT and MRI in predicting the clinicopathologic subtypes of invasive breast cancer. AJR Am J Roentgenol. 2014;203:272–9. https://doi.org/10.2214/ajr.13.11971.

    Article  PubMed  Google Scholar 

  23. Nakajo M, Kajiya Y, Kaneko T, Kaneko Y, Takasaki T, Tani A, et al. FDG PET/CT and diffusion-weighted imaging for breast cancer: prognostic value of maximum standardized uptake values and apparent diffusion coefficient values of the primary lesion. Eur J Nucl Med Mol Imaging. 2010;37:2011–20. https://doi.org/10.1007/s00259-010-1529-7.

    Article  PubMed  CAS  Google Scholar 

  24. Choi BB, Kim SH, Kang BJ, Lee JH, Song BJ, Jeong SH, et al. Diffusion-weighted imaging and FDG PET/CT: predicting the prognoses with apparent diffusion coefficient values and maximum standardized uptake values in patients with invasive ductal carcinoma. World J Surg Oncol. 2012;10:126. https://doi.org/10.1186/1477-7819-10-126.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Byun BH, Noh WC, Lim I, Lee SS, Cho AR, Park JA, et al. A new method for apparent diffusion coefficient measurement using sequential F-18-FDG PET and MRI: correlation with histological grade of invasive ductal carcinoma of the breast. Ann Nucl Med. 2013;27:720–8. https://doi.org/10.1007/s12149-013-0737-1.

    Article  PubMed  CAS  Google Scholar 

  26. Baba S, Isoda T, Maruoka Y, Kitamura Y, Sasaki M, Yoshida T, et al. Diagnostic and prognostic value of pretreatment SUV in F-18-FDG/PET in breast cancer: comparison with apparent diffusion coefficient from diffusion-weighted MR imaging. J Nucl Med. 2014;55:736–42. https://doi.org/10.2967/jnumed.113.129395.

    Article  PubMed  CAS  Google Scholar 

  27. Kitajim K, Yamano T, Fukushima K, Miyoshi Y, Hirota S, Kawanaka Y, et al. Correlation of the SUVmax of FDG-PET and ADC values of diffusion-weighted MR imaging with pathologic prognostic factors in breast carcinoma. Eur J Radiol. 2016;85:943–9. https://doi.org/10.1016/j.ejrad.2016.02.015.

    Article  Google Scholar 

  28. Catalano OA, Daye D, Signore A, Iannace C, Vangel M, Luongo A, et al. Staging performance of whole-body DWI, PET/CT and PET/MRI in invasive ductal carcinoma of the breast. Int J Oncol. 2017;51:281–8. https://doi.org/10.3892/ijo.2017.4012.

    Article  PubMed  Google Scholar 

  29. Catalano OA, Rosen BR, Sahani DV, Hahn PF, Guimaraes AR, Vangel MG, et al. Clinical impact of PET/MR imaging in patients with cancer undergoing same-day PET/CT: initial experience in 134 patients – a hypothesis-generating exploratory study. Radiology. 2013;269:857–69. https://doi.org/10.1148/radiol.13131306.

    Article  PubMed  Google Scholar 

  30. Pace L, Nicolai E, Luongo A, Aiello M, Catalano OA, Soricelli A, et al. Comparison of whole-body PET/CT and PET/MRI in breast cancer patients: lesion detection and quantitation of 18F-deoxyglucose uptake in lesions and in normal organ tissues. Eur J Radiol. 2014;83:289–96.

    Article  PubMed  Google Scholar 

  31. Wiesmuller M, Quick HH, Navalpakkam B, Lell MM, Uder M, Ritt P, et al. Comparison of lesion detection and quantitation of tracer uptake between PET from a simultaneously acquiring whole-body PET/MR hybrid scanner and PET from PET/CT. Eur J Nucl Med Mol Imaging. 2013;40:12–21. https://doi.org/10.1007/s00259-012-2249-y.

    Article  PubMed  CAS  Google Scholar 

  32. Boellaard R, O’Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2010;37:181–200. https://doi.org/10.1007/s00259-009-1297-4.

    Article  PubMed  Google Scholar 

  33. Elston CW, Ellis IO. Pathological prognostic factors in breast cancer I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991;19(5):403–410

  34. Martinez-Moller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd’hotel C, Ziegler SI, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med. 2009;50:520–6. https://doi.org/10.2967/jnumed.108.054726.

    Article  PubMed  Google Scholar 

  35. Yuan J, Chow SKK, Yeung DKW, Ahuja AT, King AD. Quantitative evaluation of dual-flip-angle T1 mapping on DCE-MRI kinetic parameter estimation in head and neck. Quant Imaging Med Surg. 2012;2:245–53. https://doi.org/10.3978/j.issn.2223-4292.2012.11.04.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fritz-Hansen T, Rostrup E, Larsson HB, Sondergaard L, Ring P, Henriksen O. Measurement of the arterial concentration of Gd-DTPA using MRI: a step toward quantitative perfusion imaging. Magn Reson Med. 1996;36:225–31. https://doi.org/10.1002/mrm.1910360209.

    Article  PubMed  CAS  Google Scholar 

  37. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ, et al. Strategies for subtypes – dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol. 2011;22:1736–47. https://doi.org/10.1093/annonc/mdr304.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Plecha DM, Faulhaber P. PET/MRI of the breast. Eur J Radiol. 2017;94:A26–34. https://doi.org/10.1016/j.ejrad.2017.05.006.

    Article  PubMed  Google Scholar 

  39. Goorts B, Voo S, van Nijnatten TJA, Kooreman LFS, de Boer M, Keymeulen KBMI, et al. Hybrid F-18-FDG PET/MRI might improve locoregional staging of breast cancer patients prior to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging. 2017;44:1796–805. https://doi.org/10.1007/s00259-017-3745-x.

    Article  PubMed  Google Scholar 

  40. Cho N, Im SA, Cheon GJ, Park IA, Lee KH, Kim TY, et al. Integrated 18F-FDG PET/MRI in breast cancer: early prediction of response to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging. 2018;45(3):328–39. https://doi.org/10.1007/s00259-017-3849-3.

  41. Catalano OA, Horn GL, Signore A, Iannace C, Lepore M, Vangel M, et al. PET/MR in invasive ductal breast cancer: correlation between imaging markers and histological phenotype. Br J Cancer. 2017;116:893–902. https://doi.org/10.1038/bjc.2017.26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Higuchi T, Nishimukai A, Ozawa H, Fujimoto Y, Yanai A, Miyagawa Y, et al. Prognostic significance of preoperative F-18-FDG PET/CT for breast cancer subtypes. Breast. 2016;30:5–12. https://doi.org/10.1016/j.breast.2016.08.003.

    Article  PubMed  Google Scholar 

  43. Yoon HJ, Kang KW, Chun IK, Cho N, Im SA, Jeong S, et al. Correlation of breast cancer subtypes, based on estrogen receptor, progesterone receptor, and HER2, with functional imaging parameters from Ga-68-RGD PET/CT and F-18-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2014;41:1534–43. https://doi.org/10.1007/s00259-014-2744-4.

    Article  PubMed  CAS  Google Scholar 

  44. De Cicco C, Gilardi L, Botteri E, Fracassi SLV, Di Dia GA, Botta F, et al. Is F-18 fluorodeoxyglucose uptake by the primary tumor a prognostic factor in breast cancer? Breast. 2013;22:39–43. https://doi.org/10.1016/j.breast.2012.05.009.

    Article  PubMed  Google Scholar 

  45. Choi SY, Chang YW, Park HJ, Kim HJ, Hong SS, Seo DY. Correlation of the apparent diffusion coefficiency values on diffusion-weighted imaging with prognostic factors for breast cancer. Br J Radiol. 2012;85:e474–9. https://doi.org/10.1259/bjr/79381464.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Lee HS, Kim SH, Kang BJ, Baek JE, Song BJ. Perfusion parameters in dynamic contrast-enhanced MRI and apparent diffusion coefficient value in diffusion-weighted MRI: association with prognostic factors in breast cancer. Acad Radiol. 2016;23:446–56. https://doi.org/10.1016/j.acra.2015.12.011.

    Article  PubMed  Google Scholar 

  47. Jeh SK, Kim SH, Kim HS, Kang BJ, Jeong SH, Yim HW, et al. Correlation of the apparent diffusion coefficient value and dynamic magnetic resonance imaging findings with prognostic factors in invasive ductal carcinoma. J Magn Reson Imaging. 2011;33:102–9. https://doi.org/10.1002/jmri.22400.

    Article  PubMed  Google Scholar 

  48. Molinari C, Clauser P, Girometti R, Linda A, Cimino E, Puglisi F, et al. MR mammography using diffusion-weighted imaging in evaluating breast cancer: a correlation with proliferation index. Radiol Med. 2015;120:911–8. https://doi.org/10.1007/s11547-015-0527-z.

    Article  PubMed  Google Scholar 

  49. Koo HR, Cho N, Song IC, Kim H, Chang JM, Yi A, et al. Correlation of perfusion parameters on dynamic contrast-enhanced MRI with prognostic factors and subtypes of breast cancers. J Magn Reson Imaging. 2012;36:145–51. https://doi.org/10.1002/jmri.23635.

    Article  PubMed  Google Scholar 

  50. Youk JH, Son EJ, Chung J, Kim JA, Kim EK. Triple-negative invasive breast cancer on dynamic contrast-enhanced and diffusion-weighted MR imaging: comparison with other breast cancer subtypes. Eur Radiol. 2012;22:1724–34. https://doi.org/10.1007/s00330-012-2425-2.

    Article  PubMed  Google Scholar 

  51. Incoronato M, Aiello M, Infante T, Cavaliere C, Grimaldi AM, Mirabelli P, et al. Radiogenomic analysis of oncological data: a technical survey. Int J Mol Sci. 2017;18(4). https://doi.org/10.3390/ijms18040805.

  52. Monti S, Aiello M, Incoronato M, Grimaldi AM, Moscarino M, Mirabelli P, et al. DCE-MRI pharmacokinetic-based phenotyping of invasive ductal carcinoma: a radiomic study for prediction of histological outcomes. Contrast Media Mol Imaging. 2018;2018:5076269. https://doi.org/10.1155/2018/5076269

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mottaghy FM. Is the whole larger than the sum of the parts? Integrated PET/MRI as a tool for response prediction. Eur J Nucl Med Mol Imaging. 2018;45:325–7. https://doi.org/10.1007/s00259-017-3908-9

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by “Ricerca Corrente” funding from the Italian Ministry of Health and partially by “5 per mille” IRCCS SDN grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariarosaria Incoronato.

Ethics declarations

Conflicts of interest

None.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the principles of the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. This study was approved by the institutional Ethics Committee (Prot2-11, IRCCS Fondazione SDN). This article does not describe any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Incoronato, M., Grimaldi, A.M., Cavaliere, C. et al. Relationship between functional imaging and immunohistochemical markers and prediction of breast cancer subtype: a PET/MRI study. Eur J Nucl Med Mol Imaging 45, 1680–1693 (2018). https://doi.org/10.1007/s00259-018-4010-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-018-4010-7

Keywords

Navigation