Skip to main content
Log in

Molecular imaging of cholinergic processes in prostate cancer using 11C-donepezil and 18F-FEOBV

  • Short Communication
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

High-grade prostate cancer (PC) displays parasympathetic neoneurogenesis. We investigated the binding of two PET tracers that visualize cholinergic nerves in PC tissue using autoradiography.

Methods

Prostatectomy tissue was subjected to autoradiography with 11C-donepezil and 18F-FEOBV and correlated with Gleason scores (GS). Regions of interest on the autoradiograms were defined and quantified. Tracer binding in cancer tissue regions was compared with that in normal tissue.

Results

We included 13 patients with biopsy-verified PC. In particular, 11C-donepezil uptake was higher in “high-grade” PC (GS ≥4 + 3) than in “low-grade” PC and benign hyperplasia. 11C-donepezil uptake ranged from a mean of 56 % higher (GS 3 + 3) to 409 % higher (GS 4 + 4), and 18F-FEOBV uptake ranged from 67 % higher (GS 3 + 3) to 194 % higher (GS 4 + 5). The uptake of both tracers was higher in PC with a high GS than in PC with a low GS, but the difference was significant only for 11C-donepezil (p = 0.003).

Conclusion

Uptake of PET tracers binding to cholinergic nerves was markedly higher in PC with a high GS than in PC with a low GS. This finding implies that 11C-donepezil PET/CT may be able to differentiate between low-grade and high-grade PC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin. 2011;61(4):212–36. doi:10.3322/caac.20121.

    Article  PubMed  Google Scholar 

  2. Wilt TJ, Brawer MK, Jones KM, Barry MJ, Aronson WJ, Fox S, et al. Radical prostatectomy versus observation for localized prostate cancer. N Engl J Med. 2012;367(3):203–13. doi:10.1056/NEJMoa1113162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Isariyawongse BK, Sun L, Banez LL, Robertson C, Polascik TJ, Maloney K, et al. Significant discrepancies between diagnostic and pathologic Gleason sums in prostate cancer: the predictive role of age and prostate-specific antigen. Urology. 2008;72(4):882–6. doi:10.1016/j.urology.2008.02.021.

    Article  PubMed  Google Scholar 

  4. Singh H, Canto EI, Shariat SF, Kadmon D, Miles BJ, Wheeler TM, et al. Predictors of prostate cancer after initial negative systematic 12 core biopsy. J Urol. 2004;171(5):1850–4. doi:10.1097/01.ju.0000119667.86071.e7.

    Article  PubMed  Google Scholar 

  5. Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ, et al. Autonomic nerve development contributes to prostate cancer progression. Science. 2013;341(6142):1236361. doi:10.1126/science.1236361.

    Article  PubMed  Google Scholar 

  6. Gjerloff T, Jakobsen S, Nahimi A, Munk OL, Bender D, Alstrup AK, et al. In vivo imaging of human acetylcholinesterase density in peripheral organs using 11C-donepezil: dosimetry, biodistribution, and kinetic analyses. J Nucl Med. 2014;55(11):1818–24. doi:10.2967/jnumed.114.143859.

    Article  PubMed  Google Scholar 

  7. Gjerloff T, Fedorova T, Knudsen K, Munk OL, Nahimi A, Jacobsen S, et al. Imaging acetylcholinesterase density in peripheral organs in Parkinson’s disease with 11C-donepezil PET. Brain J Neurol. 2015;138(Pt 3):653–63. doi:10.1093/brain/awu369.

    Article  Google Scholar 

  8. Petrou M, Frey KA, Kilbourn MR, Scott PJ, Raffel DM, Bohnen NI, et al. In vivo imaging of human cholinergic nerve terminals with (-)-5-(18)F-fluoroethoxybenzovesamicol: biodistribution, dosimetry, and tracer kinetic analyses. J Nucl Med. 2014;55(3):396–404. doi:10.2967/jnumed.113.124792.

    Article  CAS  PubMed  Google Scholar 

  9. Reubi JC, Waser B, Schaer JC, Markwalder R. Somatostatin receptors in human prostate and prostate cancer. J Clin Endocrinol Metab. 1995;80(9):2806–14. doi:10.1210/jcem.80.9.7673428.

    CAS  PubMed  Google Scholar 

  10. Kawashima K, Fujii T, Moriwaki Y, Misawa H. Critical roles of acetylcholine and the muscarinic and nicotinic acetylcholine receptors in the regulation of immune function. Life Sci. 2012;91(21-22):1027–32. doi:10.1016/j.lfs.2012.05.006.

    Article  CAS  PubMed  Google Scholar 

  11. Ishikawa M, Sakata M, Ishii K, Kimura Y, Oda K, Toyohara J, et al. High occupancy of sigma1 receptors in the human brain after single oral administration of donepezil: a positron emission tomography study using [11C]SA4503. Int J Neuropsychopharmacol. 2009;12(8):1127–31. doi:10.1017/S1461145709990204.

    Article  CAS  PubMed  Google Scholar 

  12. Vilner BJ, John CS, Bowen WD. Sigma-1 and sigma-2 receptors are expressed in a wide variety of human and rodent tumor cell lines. Cancer Res. 1995;55(2):408–13.

    CAS  PubMed  Google Scholar 

  13. Picchio M, Mapelli P, Panebianco V, Castellucci P, Incerti E, Briganti A, et al. Imaging biomarkers in prostate cancer: role of PET/CT and MRI. Eur J Nucl Med Mol Imaging. 2015;42(4):644–55. doi:10.1007/s00259-014-2982-5.

    Article  CAS  PubMed  Google Scholar 

  14. Brogsitter C, Zophel K, Kotzerke J. 18F-Choline, 11C-choline and 11C-acetate PET/CT: comparative analysis for imaging prostate cancer patients. Eur J Nucl Med Mol Imaging. 2013;40 Suppl 1:S18–27. doi:10.1007/s00259-013-2358-2.

    Article  PubMed  Google Scholar 

  15. Rosario DJ, Lane JA, Metcalfe C, Donovan JL, Doble A, Goodwin L, et al. Short term outcomes of prostate biopsy in men tested for cancer by prostate specific antigen: prospective evaluation within protect study. BMJ. 2012;344:d7894. doi:10.1136/bmj.d7894.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Moore CM, Robertson NL, Arsanious N, Middleton T, Villers A, Klotz L, et al. Image-guided prostate biopsy using magnetic resonance imaging-derived targets: a systematic review. Eur Urol. 2013;63(1):125–40. doi:10.1016/j.eururo.2012.06.004.

    Article  PubMed  Google Scholar 

Download references

Compliance with ethical standards

Funding

This study was funded by the Danish Cancer Society.

Conflicts of interest

None.

Ethical approval

The study was approved by the Central Denmark Region Committee on Health Research.

Informed consent

Informed consent to the diagnostic investigation and treatment was given by all patients. This study only used prostatectomy tissue, so informed consent to the autoradiography study was waived in accordance with Danish legislation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten Gersel Stokholm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stokholm, M.G., Høyer, S., Borre, M. et al. Molecular imaging of cholinergic processes in prostate cancer using 11C-donepezil and 18F-FEOBV. Eur J Nucl Med Mol Imaging 43, 906–910 (2016). https://doi.org/10.1007/s00259-015-3143-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-015-3143-1

Keywords

Navigation