Skip to main content
Log in

Coronary calcium score scans for attenuation correction of quantitative PET/CT 13N-ammonia myocardial perfusion imaging

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to evaluate whether ECG-triggered coronary calcium scoring (CCS) scans can be used for attenuation correction (AC) to quantify myocardial blood flow (MBF) and coronary flow reserve (CFR) assessed by PET/CT with 13N-ammonia.

Methods

Thirty-five consecutive patients underwent a 13N-ammonia PET/CT scan at rest and during standard adenosine stress. MBF values were calculated using AC maps obtained from the ECG-triggered CCS scan during inspiration and validated against MBF values calculated using standard non-gated transmission scans for AC. CFR was calculated as the ratio of hyperaemic over resting MBF. In all 35 consecutive patients intraobserver variability was assessed by blinded repeat analysis for both AC methods.

Results

There was an excellent correlation between CT AC and CCS for global MBF values at rest (n = 35, r = 0.94, p < 0.001) and during stress (n = 35, r = 0.97, p < 0.001) with narrow Bland-Altman (BA) limits of agreement (−0.21 to 0.10 ml/min per g and −0.41 to 0.30 ml/min per g) as well as for global CFR (n = 35, r = 0.96, p < 0.001, BA −0.27 to 0.34). The excellent correlation was preserved on the segmental MBF analysis for both rest and stress (n = 1190, r = 0.93, p < 0.001, BA −0.60 to 0.50) and for CFR (n = 595, r = 0.87, p < 0.001, BA −0.71 to 0.74). In addition, reproducibility proved excellent for global CFR by CT AC (n = 35, r = 0.91, p < 0.001, BA −0.42–0.58) and CCS scans (n = 35, r = 0.94, p < 0.001, BA −0.34–0.45).

Conclusion

Use of attenuation maps from CCS scans allows accurate quantitative MBF and CFR assessment with 13N-ammonia PET/CT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Muzik O, Beanlands RS, Hutchins GD, Mangner TJ, Nguyen N, Schwaiger M. Validation of nitrogen-13-ammonia tracer kinetic model for quantification of myocardial blood flow using PET. J Nucl Med 1993;34:83–91.

    CAS  PubMed  Google Scholar 

  2. Okazawa H, Takahashi M, Hata T, Sugimoto K, Kishibe Y, Tsuji T. Quantitative evaluation of myocardial blood flow and ejection fraction with a single dose of (13)NH(3) and gated PET. J Nucl Med 2002;43:999–1005.

    PubMed  Google Scholar 

  3. Nagamachi S, Czernin J, Kim AS, Sun KT, Bottcher M, Phelps ME, et al. Reproducibility of measurements of regional resting and hyperemic myocardial blood flow assessed with PET. J Nucl Med 1996;37:1626–31.

    CAS  PubMed  Google Scholar 

  4. Schepis T, Gaemperli O, Treyer V, Valenta I, Burger C, Koepfli P, et al. Absolute quantification of myocardial blood flow with 13N-ammonia and 3-dimensional PET. J Nucl Med 2007;48:1783–9.

    Article  CAS  PubMed  Google Scholar 

  5. Kaufmann PA, Camici PG. Myocardial blood flow measurement by PET: technical aspects and clinical applications. J Nucl Med 2005;46:75–88.

    PubMed  Google Scholar 

  6. Koepfli P, Hany TF, Wyss CA, Namdar M, Burger C, Konstantinidis AV, et al. CT attenuation correction for myocardial perfusion quantification using a PET/CT hybrid scanner. J Nucl Med 2004;45:537–42.

    PubMed  Google Scholar 

  7. Burger C, Goerres G, Schoenes S, Buck A, Lonn AH, Von Schulthess GK. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med Mol Imaging 2002;29:922–7.

    Article  CAS  PubMed  Google Scholar 

  8. Schepis T, Gaemperli O, Koepfli P, Rüegg C, Burger C, Leschka S, et al. Use of coronary calcium score scans from stand-alone multislice computed tomography for attenuation correction of myocardial perfusion SPECT. Eur J Nucl Med Mol Imaging 2007;34:11–9.

    Article  PubMed  Google Scholar 

  9. Cerqueira MD, Verani MS, Schwaiger M, Heo J, Iskandrian AS. Safety profile of adenosine stress perfusion imaging: results from the Adenoscan Multicenter Trial Registry. J Am Coll Cardiol 1994;23:384–9.

    CAS  PubMed  Google Scholar 

  10. Namdar M, Koepfli P, Grathwohl R, Siegrist PT, Klainguti M, Schepis T, et al. Caffeine decreases exercise-induced myocardial flow reserve. J Am Coll Cardiol 2006;47:405–10.

    Article  CAS  PubMed  Google Scholar 

  11. Siegrist PT, Gaemperli O, Koepfli P, Schepis T, Namdar M, Valenta I, et al. Repeatability of cold pressor test-induced flow increase assessed with H(2)(15)O and PET. J Nucl Med 2006;47:1420–6.

    PubMed  Google Scholar 

  12. Wyss CA, Koepfli P, Mikolajczyk K, Burger C, von Schulthess GK, Kaufmann PA. Bicycle exercise stress in PET for assessment of coronary flow reserve: repeatability and comparison with adenosine stress. J Nucl Med 2003;44:146–54.

    PubMed  Google Scholar 

  13. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539–42.

    Article  PubMed  Google Scholar 

  14. Hutchins GD, Schwaiger M, Rosenspire KC, Krivokapich J, Schelbert H, Kuhl DE. Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol 1990;15:1032–42.

    Article  CAS  PubMed  Google Scholar 

  15. DeGrado TR, Hanson MW, Turkington TG, Delong DM, Brezinski DA, Vallée JP, et al. Estimation of myocardial blood flow for longitudinal studies with 13N-labeled ammonia and positron emission tomography. J Nucl Cardiol 1996;3:494–507.

    Article  CAS  PubMed  Google Scholar 

  16. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307–10.

    CAS  PubMed  Google Scholar 

  17. Kaufmann PA, Gnecchi-Ruscone T, Yap JT, Rimoldi O, Camici PG. Assessment of the reproducibility of baseline and hyperemic myocardial blood flow measurements with 15O-labeled water and PET. J Nucl Med 1999;40:1848–56.

    CAS  PubMed  Google Scholar 

  18. Jagathesan R, Kaufmann PA, Rosen SD, Rimoldi OE, Turkeimer F, Foale R, et al. Assessment of the long-term reproducibility of baseline and dobutamine-induced myocardial blood flow in patients with stable coronary artery disease. J Nucl Med 2005;46:212–9.

    PubMed  Google Scholar 

  19. Schindler TH, Zhang XL, Prior JO, Cadenas J, Dahlbom M, Sayre J, et al. Assessment of intra- and interobserver reproducibility of rest and cold pressor test-stimulated myocardial blood flow with (13)N-ammonia and PET. Eur J Nucl Med Mol Imaging 2007;34:1178–88.

    Article  PubMed  Google Scholar 

  20. Adachi I, Gaemperli O, Valenta I, Schepis T, Siegrist PT, Treyer V, et al. Assessment of myocardial perfusion by dynamic O-15-labeled water PET imaging: validation of a new fast factor analysis. J Nucl Cardiol 2007;14:698–705.

    Article  PubMed  Google Scholar 

  21. Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med 2008;358:1336–45.

    Article  CAS  PubMed  Google Scholar 

  22. Schenker MP, Dorbala S, Hong EC, Rybicki FJ, Hachamovitch R, Kwong RY, et al. Interrelation of coronary calcification, myocardial ischemia, and outcomes in patients with intermediate likelihood of coronary artery disease: a combined positron emission tomography/computed tomography study. Circulation 2008;117:1693–700.

    Article  PubMed  Google Scholar 

  23. Schepis T, Gaemperli O, Koepfli P, Namdar M, Valenta I, Scheffel H, et al. Added value of coronary artery calcium score as an adjunct to gated SPECT for the evaluation of coronary artery disease in an intermediate-risk population. J Nucl Med 2007;48:1424–30.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The study was supported by a grant from the Swiss National Science Foundation (SNSF-professorship grant) and by the ZIHP (Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland). We are grateful to Josephine Trinckauf, Ennio Mueller, Mirjam De Bloeme, Verena Weichselbaumer and Edlira Loga for their excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp A. Kaufmann.

Additional information

Nina Burkhard and Bernhard A. Herzog contributed equally

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burkhard, N., Herzog, B.A., Husmann, L. et al. Coronary calcium score scans for attenuation correction of quantitative PET/CT 13N-ammonia myocardial perfusion imaging. Eur J Nucl Med Mol Imaging 37, 517–521 (2010). https://doi.org/10.1007/s00259-009-1271-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-009-1271-1

Keywords

Navigation