Skip to main content

Advertisement

Log in

Chondral tumours: discrepancy rate between needle biopsy and surgical histology

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To determine the reliability of image-guided core needle biopsy (IGCNB) for the diagnosis and grading of chondral tumours of bone compared with surgical histology.

Materials and methods

Retrospective review of patients with a chondral tumour of bone who underwent IGCNB and surgical resection between January 2007 and December 2017. Data collected included age, sex, skeletal location, technique used for IGCNB, IGCNB result including histological grade and comparison with surgical histology.

Results

A total of 237 patients were included (135 males and 102 females with mean age 53.7 years, range 9–89 years). A total of 174 IGCNBs were CT-guided, 57 ultrasound-guided and 6 fluoroscopic-guided. Two hundred thirty-six of 237 (99.6%) IGCNBs were diagnostic for a chondral tumour, although grade could not be determined in 13 (5.5%) due to necrosis. A positive correlation for tumour grade between IGCNB and surgical histology was achieved in 181 cases (76.4%). In 36 patients (15.2%), IGCNB under-graded the tumour, while in 6 (2.5%), IGCNB over-graded the tumour. Discrepancy between IGCNB and surgical histology was significantly greater for surface/peripheral lesions (p = 0.02) and lesions arising from the flat bones or spine (p = 0.002).

Discussion

IGCNB can achieve a diagnosis of a chondral tumour in a high proportion of cases when compared with final diagnosis from surgical resection specimens. However, correlation of tumour grade between IGCNB and resection histology is less reliable with discordance seen in almost one-quarter of cases, most commonly at non-appendicular sites. Therefore, IGCNB results should not be considered in isolation of imaging and clinical features when planning surgical management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim MJ, Cho KJ, Ayala AG, Ro JY. Chondrosarcoma: with updates on molecular genetics. Sarcoma. 2011;2011:405437. https://doi.org/10.1155/2011/405437.

    Article  PubMed  PubMed Central  Google Scholar 

  2. National Comprehensive Cancer Network. Bone and soft tissue sarcomas changes to pathology codes in the 4th edition of the World Health Organisation Classification of Bone and Soft Tissue Sarcomas, http://www.ncin.org.uk/publications/reports/. Accessed 01 April 2019.

  3. Francis M, Dennis N, Charman J, Lawrence G, Grimer R. Bone and soft tissue sarcomas UK incidence and survival: 1996 to 2010 November 2013 Version 2.0 NCIN. http://www.ncin.org.uk/publications/reports/. Accessed 1 April 2019.

  4. Douis H, Saifuddin A. The imaging of cartilaginous bone tumours II. Chondrosarcoma Skeletal Radiol. 2013;42(5):611–26. https://doi.org/10.1007/s00256-012-1521-3.

    Article  CAS  PubMed  Google Scholar 

  5. Shemesh SS, Acevedo-Nieves JD, Pretell-Mazzini J. Treatment strategies for central low-grade chondrosarcoma of long bones: a systematic review of the literature and meta-analysis. Musculoskelet Surg. 2018;102(2):95–109. https://doi.org/10.1007/s12306-017-0507-7.

    Article  CAS  PubMed  Google Scholar 

  6. Dickey ID, Rose PS, Fuchs B, et al. Dedifferentiated chondrosarcoma: the role of chemotherapy with updated outcomes. J Bone Joint Surg Am. 2004;86(11):2412–8.

    Article  Google Scholar 

  7. Gerrand C, Athanasou N, Brennan B, Grimer R, Judson I, Morland B, et al. UK guidelines for the management of bone sarcomas. Clin Sarcoma Res BioMed Central. 2016;6(1):7.

    Article  Google Scholar 

  8. Traina F, Errani C, Toscano A, Pungetti C, Fabbri D, Mazzotti A, et al. Current concepts in the biopsy of musculoskeletal tumors: AAOS exhibit selection. J Bone Joint Surg Am. 2015;97(2):e7. https://doi.org/10.2106/JBJS.N.00661.

    Article  PubMed  Google Scholar 

  9. Exner GU, Kurer MO, Mamisch-Saupe N, Cannon SR. The tactics and technique of musculoskeletal biopsy. EFORT Open Rev. 2017;2(2):51–7. https://doi.org/10.1302/2058-5241.2.160065 eCollection 2017 Feb.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kiatisevi P, Thanakit V, Sukunthanak B, Boonthatip M, Bumrungchart S, Witoonchart K. Computed tomography-guided core needle biopsy versus incisional biopsy in diagnosing musculoskeletal lesions. J Orthop Surg (Hong Kong). 2013;21(2):204–8.

    Article  Google Scholar 

  11. Kubo T, Furuta T, Johan MP, Sakuda T, Ochi M, Adachi N. A meta-analysis supports core needle biopsy by radiologists for better histological diagnosis in soft tissue and bone sarcomas. Medicine (Baltimore). 2018;97(29):e11567. https://doi.org/10.1097/MD.0000000000011567.

    Article  Google Scholar 

  12. Jennings R, Riley N, Rose B, et al. An evaluation of the diagnostic accuracy of the grade of preoperative biopsy compared to surgical excision in chondrosarcoma of the long bones. Int J Surg Oncol. 2010;2010:270195. https://doi.org/10.1155/2010/270195.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Roitman PD, Farfalli GL, Ayerza MA, Múscolo DL, Milano FE, Aponte-Tinao LA. Is needle biopsy clinically useful in preoperative grading of central chondrosarcoma of the pelvis and long bones? Clin Orthop Relat Res. 2017;475(3):808–14. https://doi.org/10.1007/s11999-016-4738-y.

    Article  PubMed  Google Scholar 

  14. Stevenson JD, Laitinen MK, Parry MC, Sumathi V, Grimer RJ, Jeys LM. The role of surgical margins in chondrosarcoma. Eur J Surg Oncol. 2018;44(9):1412–8. https://doi.org/10.1016/j.ejso.2018.05.033.

    Article  PubMed  Google Scholar 

  15. Nota SP, Braun Y, Schwab JH, van Dijk CN, Bramer JA. The identification of prognostic factors and survival statistics of conventional central chondrosarcoma. Sarcoma. 2015;2015:623746. https://doi.org/10.1155/2015/623746.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fromm J, Klein A, Baur-Melnyk A, Knösel T, Lindner L, Birkenmaier C, et al. Survival and prognostic factors in conventional central chondrosarcoma. BMC Cancer. 2018;18(1):849. https://doi.org/10.1186/s12885-018-4741-7.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Normand AN, Cannon CP, Lewis VO, Lin PP, Yasko AW. Curettage of biopsy-diagnosed grade 1 periacetabular chondrosarcoma. Clin Orthop Relat Res. 2007;459:146–9.

    Article  Google Scholar 

  18. Laitinen MK, Stevenson JD, Parry MC, Sumathi V, Grimer RJ, Jeys LM. The role of grade in local recurrence and the disease-specific survival in chondrosarcomas. Bone Joint J. 2018;100-B(5):662–6. https://doi.org/10.1302/0301-620X.100B5.BJJ-2017-1243.R1.

    Article  CAS  PubMed  Google Scholar 

  19. Douis H, Jeys L, Grimer R, Vaiyapuri S, Davies AM. Is there a role for diffusion-weighted MRI (DWI) in the diagnosis of central cartilage tumors? Skelet Radiol. 2015;44(7):963–9. https://doi.org/10.1007/s00256-015-2123-7.

    Article  CAS  Google Scholar 

  20. Douis H, Parry M, Vaiyapuri S, Davies AM. What are the differentiating clinical and MRI-features of enchondromas from low-grade chondrosarcomas? Eur Radiol. 2018;28(1):398–409. https://doi.org/10.1007/s00330-017-4947-0.

    Article  PubMed  Google Scholar 

  21. Fritz B, Müller DA, Sutter R, Wurnig MC, Wagner MW, Pfirrmann CWA, et al. Magnetic resonance imaging-based grading of cartilaginous bone tumors: added value of quantitative texture analysis. Investig Radiol. 2018;53(11):663–72. https://doi.org/10.1097/RLI.0000000000000486.

    Article  Google Scholar 

  22. Parlier-Cuau C, Bousson V, Ogilvie CM, Lackman RD, Laredo JD. When should we biopsy a solitary central cartilaginous tumor of long bones? Literature review and management proposal. Eur J Radiol. 2011;77(1):6–12. https://doi.org/10.1016/j.ejrad.2010.06.051.

    Article  PubMed  Google Scholar 

  23. Akoh CC, Craig E, Troester AM, Miller BJ. Radiographic enchondroma surveillance: assessing clinical outcomes and costs effectiveness. Iowa Orthop J. 2019;39(1):185–93.

    PubMed  PubMed Central  Google Scholar 

  24. Patel A, Davies AM, Botchu R, James S. A pragmatic approach to the imaging and follow-up of solitary central cartilage tumours of the proximal humerus and knee. Clin Radiol. 2019;74(7):517–26. https://doi.org/10.1016/j.crad.2019.01.025.

    Article  CAS  PubMed  Google Scholar 

  25. Chen YC, Wu PK, Chen CF, Chen WM. Intralesional curettage of central low-grade chondrosarcoma: a midterm follow-up study. J Chin Med Assoc. 2017;80(3):178–82. https://doi.org/10.1016/j.jcma.2016.10.002.

    Article  CAS  PubMed  Google Scholar 

  26. Italiano A, Mir O, Cioffi A, et al. Advanced chondrosarcomas: role of chemotherapy and survival. Ann Oncol. 2013;24(11):2916–22. https://doi.org/10.1093/annonc/mdt374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Skeletal Lesions Interobserver Correlation among Expert Diagnosticians (SLICED) Study Group. Reliability of histopathologic and radiologic grading of cartilaginous neoplasms in long bones. J Bone Joint Surg Am. 2007;89(10):2113–23.

    Article  Google Scholar 

  28. Yoo HJ, Hong SH, Choi JY, et al. Differentiating high-grade from low-grade chondrosarcoma with MR imaging. Eur Radiol. 2009;19(12):3008–14. https://doi.org/10.1007/s00330-009-1493-4.

    Article  PubMed  Google Scholar 

  29. Douis H, Singh L, Saifuddin A. MRI differentiation of low-grade from high-grade appendicular chondrosarcoma. Eur Radiol. 2014;24(1):232–40. https://doi.org/10.1007/s00330-013-3003-y.

    Article  PubMed  Google Scholar 

  30. Kang Y, Yuan W, Ding X, Wang G. Chondrosarcoma of the para-acetabulum: correlation of imaging features with histopathological grade. Radiol Med. 2016;121(12):897–904.

    Article  Google Scholar 

  31. Littrell LA, Wenger DE, Wold LE, et al. Radiographic, CT, and MR imaging features of dedifferentiated chondrosarcomas: a retrospective review of 174 de novo cases. Radiographics. 2004;24(5):1397–409.

    Article  Google Scholar 

  32. MacSweeney F, Darby A, Saifuddin A. Dedifferentiated chondrosarcoma of the appendicular skeleton: MRI-pathological correlation. Skelet Radiol. 2003;32(12):671–8.

    Article  Google Scholar 

  33. Saifuddin A, Mann BS, Mahroof S, Pringle JA, Briggs TW, Cannon SR. Dedifferentiated chondrosarcoma: use of MRI to guide needle biopsy. Clin Radiol. 2004;59(3):268–72.

    Article  CAS  Google Scholar 

  34. Berber O, Datta G, Sabharwal S, Aston W, Saifuddin A, Briggs T. The safety of direct primary excision of low-grade chondral lesions based on radiological diagnosis alone. Acta Orthop Belg. 2012;78(2):254–62.

    PubMed  Google Scholar 

  35. Brown MT, Gikas PD, Bhamra JS, et al. How safe is curettage of low-grade cartilaginous neoplasms diagnosed by imaging with or without pre-operative needle biopsy? Bone Joint J. 2014;96-B(8):1098–105. https://doi.org/10.1302/0301-620X.96B8.32056.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ines Oliveira.

Ethics declarations

The study was approved by the Research and Innovation Centre at The Institute of Orthopaedics, with no requirement for informed patient consent.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, I., Chavda, A., Rajakulasingam, R. et al. Chondral tumours: discrepancy rate between needle biopsy and surgical histology. Skeletal Radiol 49, 1115–1125 (2020). https://doi.org/10.1007/s00256-020-03406-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-020-03406-y

Keywords

Navigation