Skip to main content
Log in

Bioconversion of feather waste into bioactive nutrients in water by Bacillus licheniformis WHU

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Feathers become hazardous pollutants when deposited directly into the environment. The rapid expansion of the poultry industry has significantly increased feather waste, necessitating the development of new ways to degrade and utilize feathers. This study investigated the ability of Bacillus licheniformis WHU to digest intact chicken feathers in water. The results indicated that yields of free amino acids, bioactive peptides, and keratin-derived nano-/micro-particles were improved in bacteria- versus purified keratinase–derived feather hydrolysate. Bacteria-derived feather hydrolysate supplementation induced health benefits in mice, including significantly increased intestinal villus height and zonula occludens-1 protein expression, as well as increased secretory immunoglobulin A levels in the intestinal mucosa and superoxide dismutase activity in serum. Additionally, feather hydrolysate supplementation modulated the mouse gut microbiota, reflected by increased relative abundance of probiotics such as Lactobacillus spp., decreased relative abundance of Proteobacteria at the phylum level and pathogens such as Staphylococcus spp., and increased Bacteroidota/Firmicutes ratio. This study developed a simple, cost-effective method to degrade feathers by B. licheniformis WHU digestion, yielding a hydrolysate that can be directly used as a bioactive nutrient resource. The study findings have applications in the livestock, poultry, and aquaculture industries, which have high demands for cheap protein.

Key points

• Bacillus licheniformis could degrade intact feather in water.

• The resulting feather hydrolysate shows prebiotic effects on mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The sequencing data were deposited in the National Center for Biotechnology Information database under accession number PRJNA885586.

References

  • Bhari R, Kaur M, Sarup Singh R (2021) Chicken feather waste hydrolysate as a superior biofertilizer in agroindustry. Curr Microbiol 78:2212–2230

    Article  CAS  PubMed  Google Scholar 

  • Cai S, Yang Y, Kong Y, Guo Q, Xu Y, Xing P, Sun Y, Qian J, Xu R, Xie L, Hu Y, Wang M, Li M, Tian Y, Mao W (2022) Gut bacteria Erysipelatoclostridium and its related metabolite ptilosteroid A could predict radiation-induced intestinal injury. Front Public Health 10:862598

    Article  PubMed  PubMed Central  Google Scholar 

  • Callegaro K, Brandelli A, Daroit DJ (2019) Beyond plucking: feathers bioprocessing into valuable protein hydrolysates. Waste Manag 95:399–415

    Article  CAS  PubMed  Google Scholar 

  • Chilakamarry CR, Mahmood S, Saffe S, Arifin MAB, Gupta A, Sikkandar MY, Begum SS, Narasaiah B (2021) Extraction and application of keratin from natural resources: a review. 3 Biotech 11:220

    Article  PubMed  PubMed Central  Google Scholar 

  • Cutting SM (2011) Bacillus probiotics. Food Microbiol 28:214–220

    Article  PubMed  Google Scholar 

  • Daroit DJ, Brandelli A (2014) A current assessment on the production of bacterial keratinases. Crit Rev Biotechnol 34:372–384

    Article  CAS  PubMed  Google Scholar 

  • Fakhfakh N, Ktari N, Haddar A, Mnif IH, Dahmen I, Nasri M (2011) Total solubilisation of the chicken feathers by fermentation with a keratinolytic bacterium, Bacillus pumilus A1, and the production of protein hydrolysate with high antioxidative activity. Process Biochem 46:1731–1737

    Article  CAS  Google Scholar 

  • Fakhfakh N, Gargouri M, Dahmen I, Sellami-Kamoun A, El Feki A, Nasri M (2012) Improvement of antioxidant potential in rats consuming feathers protein hydrolysate obtained by fermentation of the keratinolytic bacterium, Bacillus pumilus A1. Afr J Biotechnol 11:938–949

    Article  CAS  Google Scholar 

  • Farooq PD, Urrunaga NH, Tang DM, von Rosenvinge EC (2015) Pseudomembranous colitis. Dis Mon 61:181–206

    Article  PubMed  PubMed Central  Google Scholar 

  • Feroz S, Muhammad N, Ranayake J, Dias G (2020) Keratin-based materials for biomedical applications. Bioact Mater 5:496–509

    PubMed  PubMed Central  Google Scholar 

  • Fontoura R, Daroit DJ, Correa AP, Meira SM, Mosquera M, Brandelli A (2014) Production of feather hydrolysates with antioxidant, angiotensin-I converting enzyme- and dipeptidyl peptidase-IV-inhibitory activities. N Biotechnol 31:506–513

    Article  CAS  PubMed  Google Scholar 

  • Fukunaga M, Kuda T, Xia Y, Nakamura S, Takahashi H, Kimura B (2020) Detection and isolation of the typical gut indigenous bacteria from ddY mice fed a casein-beef tallow-based or egg yolk-based diet. J Food Biochem 44:e13246

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Li W, Deng J, Kan J, Guo T, Wang B, Hao S (2019) Recombinant human hair keratin nanoparticles accelerate dermal wound healing. ACS Appl Mater Interfaces 11:18681–18690

    Article  CAS  PubMed  Google Scholar 

  • Grazziotin A, Pimentel FA, De EV, Brandelli A (2008) Poultry feather hydrolysate as a protein source for growing rats. Braz J Vet Res Anim Sci 45:61–67

    Article  Google Scholar 

  • Hassan MA, Abol-Fotouh D, Omer AM, Tamer TM, Abbas E (2020) Comprehensive insights into microbial keratinases and their implication in various biotechnological and industrial sectors: a review. Int J Biol Macromol 154:567–583

    Article  CAS  PubMed  Google Scholar 

  • Ke F, Xie P, Yang Y, Yan L, Guo A, Yang J, Zhang J, Liu L, Wang Q, Gao X (2021) Effects of nisin, cecropin, and Penthorum chinense Pursh on the intestinal microbiome of common Carp (Cyprinus carpio). Front Nutr 8:729437

    Article  PubMed  PubMed Central  Google Scholar 

  • Lei K, Li YL, Yu DY, Rajput IR, Li WF (2013) Influence of dietary inclusion of Bacillus licheniformis on laying performance, egg quality, antioxidant enzyme activities, and intestinal barrier function of laying hens. Poult Sci 92:2389–2395

    Article  CAS  PubMed  Google Scholar 

  • Li Q (2019) Progress in microbial degradation of feather waste. Front Microbiol 10:2717

    Article  PubMed  PubMed Central  Google Scholar 

  • Li K, Zheng T, Tian Y, Xi F, Yuan J, Zhang G, Hong H (2007) Beneficial effects of Bacillus licheniformis on the intestinal microflora and immunity of the white shrimp, Litopenaeus vannamei. Biotechnol Lett 29:525–530

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Liu M, Zhou J, Hou B, Su X, Liu Z, Yuan J, Li M (2019) Bacillus licheniformis Zhengchangsheng® attenuates DSS-induced colitis and modulates the gut microbiota in mice. Benef Microbes 10:543–553

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Kelemen DW, Miller ES, Shih JC (1995) Nucleotide sequence and expression of kerA, the gene encoding a keratinolytic protease of Bacillus licheniformis PWD-1. Appl Environ Microbiol 61:1469–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin X, Wong SL, Miller ES, Shih JC (1997) Expression of the Bacillus licheniformis PWD-1 keratinase gene in B. subtilis. J Ind Microbiol Biotechnol 19:134–138

    Article  CAS  PubMed  Google Scholar 

  • Masuoka H, Suda W, Tomitsuka E, Shindo C, Takayasu L, Horwood P, Greenhill R, Hattori M, Umezaki M, Hirayama K (2020) The influences of low protein diet on the intestinal microbiota of mice. Sci Rep 10:17077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsui T, Yamada Y, Mitsuya H, Shigeri Y, Yoshida Y, Saito Y, Matsui H, Watanabe K (2009) Sustainable and practical degradation of intact chicken feathers by cultivating a newly isolated thermophilic Meiothermus ruber H328. Appl Microbiol Biotechnol 82:941–950

    Article  CAS  PubMed  Google Scholar 

  • Meignanalakshmi S, Legadevi R, Banu NA, Gayathri V, Palanisammy A (2015) A study on anti bacterial activity of keratin nanoparticles from chicken feather waste against Staphylococcus aureus (Bovine Mastitis Bacteria) and its anti oxidant activity. Eur J Biotechnol Biosci 3:1–5

    Google Scholar 

  • Muras A, Romero M, Mayer C, Otero A (2021) Biotechnological applications of Bacillus licheniformis. Crit Rev Biotechnol 41:609–627

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S, Kuda T, Midorikawa Y, Takahashi H, Kimura B (2021) Typical gut indigenous bacteria in ICR mice fed a soy protein-based normal or low-protein diet. Curr Res Food Sci 4:295–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan X, Yang J, Xie P, Zhang J, Ke F, Guo X, Liang M, Liu L, Wang Q, Gao X (2021) Enhancement of activity and thermostability of keratinase from Pseudomonas aeruginosa CCTCC AB2013184 by directed evolution with noncanonical amino acids. Front Bioeng Biotechnol 9:770907

    Article  PubMed  PubMed Central  Google Scholar 

  • Pearson D, Ward OP (1988) Bioinsecticide activity, bacterial cell lysis and proteolytic activity in cultures of Bacillus thuringiensis subsp. israelensis. J Appl Bacteriol 65:195–202

    Article  Google Scholar 

  • Peng Z, Mao X, Zhang J, Du G, Chen J (2020) Biotransformation of keratin waste to amino acids and active peptides based on cell-free catalysis. Biotechnol Biofuels 13:61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin X, Xu X, Guo Y, Shen Q, Liu J, Yang C, Scott E, Bitter H, Zhang C (2022) A sustainable and efficient recycling strategy of feather waste into keratin peptides with antimicrobial activity. Waste Manag 144:421–430

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Olea H, Reyes-Ballesteros B, Chavez-Santoscoy RA (2022) Potential application of the probiotic Bacillus licheniformis as an adjuvant in the treatment of diseases in humans and animals: a systematic review. Front Microbiol 13:993451

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Gupta A, Chik S, Kee CG, Mistry BM, Kim DH, Sharma G (2017) Characterization of keratin microparticles from feather biomass with potent antioxidant and anticancer activities. Int J Biol Macromol 104:189–196

    Article  CAS  PubMed  Google Scholar 

  • Shin NR, Whon TW, Bae JW (2015) Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol 33:496–503

    Article  CAS  PubMed  Google Scholar 

  • Srutkova D, Schwarzer M, Hudcovic T, Zakostelska Z, Drab V, Spanova A, Rittich B, Kozakova H, Schabussova I (2015) Bifidobacterium longum CCM 7952 promotes epithelial barrier function and prevents acute DSS-inducedcolitis in strictly strain-specific manner. PLoS ONE 10:e0134050

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan J, Ni D, Taitz J, Pinget GV, Read M, Senior A, Wali JA, Elnour R, Shanahan E, Wu H, Chadban SJ, Nanan R, King NJC, Grau GE, Simpson SJ, Macia L (2022) Dietary protein increases T-cell-independent sIgA production through changes in gut microbiota-derived extracellular vesicles. Nat Commun 13:4336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tonouchi N, Ito H (2017) Present global situation of amino acids in industry. Adv Biochem Eng Biotechnol 159:3–14

    PubMed  Google Scholar 

  • Verma A, Singh H, Anwar S, Chattopadhyay A, Tiwari KK, Kaur S, Dhilon GS (2017) Microbial keratinases: industrial enzymes with waste management potential. Crit Rev Biotechnol 37:476–491

    Article  CAS  PubMed  Google Scholar 

  • Vidmar B, Vodovnik M (2018) Microbial keratinases: enzymes with promising biotechnological applications. Technol Biotechnol 56:312–328

    CAS  Google Scholar 

  • Wang J, Kadyan S, Ukhanov V, Cheng J, Nagpal R, Cui L (2022) Recent advances in the health benefits of pea protein (Pisum sativum): bioactive peptides and the interaction with the gut microbiome. Curr Opin Food Sci 2022:100944

    Article  Google Scholar 

  • Williams C, Lee C, Garlich J, Shih JC (1991) Evaluation of a bacterial feather fermentation product, feather-lysate, as a feed protein. Poult Sci 70:85–94

    Article  CAS  Google Scholar 

  • Wu YB, Ravindran V, Thomas DG, Birtles MJ, Hendriks WH (2004) Influence of method of whole wheat inclusion and xylanase supplementation on the performance, apparent metabolisable energy, digestive tract measurements and gut morphology of broilers. Br Poult Sci 45:385–394

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Ran L, Wu Y, Liang M, Zeng J, Ke F, Wang F, Yang J, Lao X, Liu L, Wang Q, Gao X (2022) Oral administration of 5-hydroxytryptophan restores gut microbiota dysbiosis in a mouse model of depression. Front Microbiol 13:864571

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia Y, Fukunaga M, Kuda T, Goto M, Chiaraluce G, Hoshiba H, Takahashi H, Kimura B (2020) Detection and isolation of protein susceptible indigenous bacteria affected by dietary milk-casein, albumen and soy-protein in the caecum of ICR mice. Int J Biol Macromol 144:813–820

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Chen H, Gao H, Wang J, Stanton C, Ross RP, Zhang H, Chen W (2018) Bifidobacterium breve CCFM683 could ameliorate DSS-induced colitis in mice primarily via conjugated linoleic acid production and gut microbiota modulation. J Funct Foods 49:61–72

    Article  CAS  Google Scholar 

  • Yi D, Xing J, Gao Y, Pan X, Xie P, Yang J, Wang Q, Gao X (2020) Enhancement of keratin-degradation ability of the keratinase KerBL from Bacillus licheniformis WHU by proximity-triggered chemical crosslinking. Int J Biol Macromol 163:1458–1470

    Article  CAS  PubMed  Google Scholar 

  • Zakostelska Z, Kverka M, Klimesova K, Rossmann P, Mrazek J, Kopecny J, Hornova M, Srutkova D, Hudcovic T, Ridl J, Tlaskalova-Hogenova H (2011) Lysate of probiotic Lactobacillus casei DN-114 001 ameliorates colitis by strengthening the gut barrier function and changing the gut microenvironment. PLoS ONE 6:e27961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Su C, Kong XL, Gong JS, Liu YL, Li H, Qin JF, Xu ZH, Shi JS (2022) Directed evolution driving the generation of an efficient keratinase variant to facilitate the feather degradation. Bioresour Bioprocess 9:38

    Article  Google Scholar 

Download references

Funding

This work was funded by the Collaborative Fund of Science and Technology Agency of the Luzhou Government and Southwest Medical University (No. 2020LZXNYDJ29) and the Nature Science Fund Project of Southwest Medical University (No. 2021ZKMS045).

Author information

Authors and Affiliations

Authors

Contributions

Study design and investigation, data collection, and analysis: JZ, ML, and LW; Investigation: YY, YS; writing and revision: QW; study design, funding, data analysis, and writing: XG. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Qin Wang or Xiaowei Gao.

Ethics declarations

Ethics statement

The animal experiments in this study were approved and supervised by the Ethics Committee of Southwest Medical University with a permit number 20220301–013, and conducted following the Guidelines for the Care and Use of Laboratory Animals of Southwest Medical University (Luzhou, China).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3594 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liang, M., Wu, L. et al. Bioconversion of feather waste into bioactive nutrients in water by Bacillus licheniformis WHU. Appl Microbiol Biotechnol 107, 7055–7070 (2023). https://doi.org/10.1007/s00253-023-12795-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-023-12795-8

Keywords

Navigation