Skip to main content
Log in

The implication of viability and pathogenicity by truncated lipopolysaccharide in Yersinia enterocolitica

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The fast envelope stress responses play a key role in the transmission and pathogenesis of Yersinia enterocolitica, one of the most common foodborne pathogens. Our previous study showed that deletion of the waaF gene, essential for the biosynthesis of lipopolysaccharide (LPS) core polysaccharides, led to the formation of a truncated LPS structure and induced cell envelope stress. This envelope stress may disturb the intracellular signal transduction, thereby affecting the physiological functions of Y. enterocolitica. In this study, truncated LPS caused by waaF deletion was used as a model of envelope stress in Y. enterocolitica. We investigated the mechanisms of envelope stress responses and the cellular functions affected by truncated LPS. Transcriptome analysis and phenotypic validation showed that LPS truncation reduced flagellar assembly, bacterial chemotaxis, and inositol phosphate metabolism, presenting lower pathogenicity and viability both in vivo and in vitro environments. Further 4D label-free phosphorylation analysis confirmed that truncated LPS perturbed multiple intracellular signal transduction pathways. Specifically, a comprehensive discussion was conducted on the mechanisms by which chemotactic signal transduction and Rcs system contribute to the inhibition of chemotaxis. Finally, the pathogenicity of Y. enterocolitica with truncated LPS was evaluated in vitro using IPEC-J2 cells as models, and it was found that truncated LPS exhibited reduced adhesion, invasion, and toxicity of Y. enterocolitica to IPEC-J2 cells. Our research provides an understanding of LPS in the regulation of Y. enterocolitica viability and pathogenicity and, thus, opening new avenues to develop novel food safety strategies or drugs to prevent and control Y. enterocolitica infections.

Key points

• Truncated LPS reduces flagellar assembly, chemotaxis, and inositol phosphate metabolism in Y. enterocolitica.

• Truncated LPS reduces adhesion, invasion, and toxicity of Y. enterocolitica to IPEC-J2 cells.

• Truncated LPS regulates intracellular signal transduction of Y. enterocolitica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  • Ahmed HA, Tahoun ABMB, Abou Elez RMM, Abd El-Hamid MI, Abd Ellatif SS (2019) Prevalence of Yersinia enterocolitica in milk and dairy products and the effects of storage temperatures on survival and virulence gene expression. Int Dairy J 94:16–21

    Article  CAS  Google Scholar 

  • Akahoshi DT, Bevins CL (2022) Flagella at the host-microbe interface: key functions intersect with redundant responses. Front Immunol 13:828758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander C, Rietschel ET (2001) Bacterial lipopolysaccharides and innate immunity. J Endotoxin Res 7(3):167–202

    CAS  PubMed  Google Scholar 

  • Ayyildiz D, Arga KY, Avci FG, Altinisik FE, Gurer C, Gulsoy Toplan G, Kazan D, Wozny K, Brügger B, Mertoglu B, Sariyar Akbulut B (2017) Transcriptomic analysis displays the effect of (-)-roemerine on the motility and nutrient uptake in Escherichia coli. Curr Genet 63(4):709–722

    Article  CAS  PubMed  Google Scholar 

  • Bekker M, Alexeeva S, Laan W, Sawers G, Teixeira de Mattos J, Hellingwerf K (2010) The ArcBA two-component system of Escherichia coli is regulated by the redox state of both the ubiquinone and the menaquinone pool. J Bacteriol 192(3):746–754

    Article  CAS  PubMed  Google Scholar 

  • Bisht D, Meena LS (2019) Adhesion molecules facilitate host-pathogen interaction & mediate mycobacterium tuberculosis pathogenesis. Indian J Med Res 150(1):23–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bottone EJ (1999) Yersinia enterocolitica: overview and epidemiologic correlates. Microbes Infect 1(4):323–333

    Article  CAS  PubMed  Google Scholar 

  • Brzostek K, Skorek K, Raczkowska A (2012) OmpR, a central integrator of several cellular responses in Yersinia enterocolitica. Adv Exp Med Biol 954:325–334

    Article  CAS  PubMed  Google Scholar 

  • Butler SM, Camilli A (2005) Going against the grain: chemotaxis and infection in Vibrio cholerae. Nat Rev Microbiol 3(8):611–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celis AI, Relman DA (2022) Competitors versus collaborators: micronutrient processing by pathogenic and commensal human-associated gut bacteria. Mol Cell 78(4):570–576

    Article  Google Scholar 

  • Chandel NS (2021) Carbohydrate metabolism. Cold Spring Harb Perspect Biol 13(1):a040568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng A, Grant CE, Noble WS, Bailey TL (2019) MoMo: discovery of statistically significant post-translational modification motifs. Bioinformatics 35(16):2774–2782

    Article  CAS  PubMed  Google Scholar 

  • Cho THS, Pick K, Raivio TL (2023) Bacterial envelope stress responses: essential adaptors and attractive targets. Biochim Biophys Acta Mol Cell Res 1870(2):119387

    Article  CAS  PubMed  Google Scholar 

  • Colin R, Ni B, Laganenka L, Sourjik V (2021) Multiple functions of flagellar motility and chemotaxis in bacterial physiology. FEMS Microbiol Rev 45(6):fuab038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erhardt M, Dersch P (2015) Regulatory principles governing Salmonella and Yersinia virulence. Front Microbiol 6:949

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang X, Kang L, Qiu YF, Li ZS, Bai Y (2023) Yersinia enterocolitica in Crohn’s disease. Front Cell Infect Microbiol 13:1129996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flack CE, Parkinson JS (2022) Structural signatures of Escherichia coli chemoreceptor signaling states revealed by cellular crosslinking. Proc Natl Acad Sci USA 119(28):e2204161119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girgis HS, Liu Y, Ryu WS, Tavazoie S (2007) A comprehensive genetic characterization of bacterial motility. PLoS Genet 3(9):1644–1660

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Zhao T, Huang C, Chen J (2022) The role of the two-component system PhoP/PhoQ in intrinsic resistance of Yersinia enterocolitica to polymyxin. Front Microbiol 13:758571

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta V, Gulati P, Bhagat N, Dhar MS, Virdi JS (2015) Detection of Yersinia enterocolitica in food: an overview. Eur J Clin Microbiol Infect Dis 34(4):641–650

    Article  CAS  PubMed  Google Scholar 

  • Haiko J, Westerlund-Wikström B (2013) The role of the bacterial flagellum in adhesion and virulence. Biology (basel) 2(4):1242–1267

    PubMed  Google Scholar 

  • Hajam IA, Dar PA, Shahnawaz I, Jaume JC, Lee JH (2017) Bacterial flagellin-a potent immunomodulatory agent. Exp Mol Med 49(9):e373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazelbauer GL, Falke JJ, Parkinson JS (2008) Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem Sci 33(1):9–19

    Article  CAS  PubMed  Google Scholar 

  • Huovinen E, Sihvonen LM, Virtanen MJ, Haukka K, Siitonen A, Kuusi M (2010) Symptoms and sources of Yersinia enterocolitica-infection: a case-control study. BMC Infect Dis 10:122

    Article  PubMed  PubMed Central  Google Scholar 

  • Insall RH, Paschke P, Tweedy L (2022) Steering yourself by the bootstraps: how cells create their own gradients for chemotaxis. Trends Cell Biol 32(7):585–596

    Article  CAS  PubMed  Google Scholar 

  • Kang S, Li X, Xing Z, Liu X, Bai X, Yang Y, Guo D, Xia X, Zhang C, Shi C (2022) Antibacterial effect of citral on Yersinia enterocolitica and its mechanism. Food Control 135:108775

    Article  CAS  Google Scholar 

  • Kumar MS, Philominathan P (2010) The physics of flagellar motion of E. coli during chemotaxis. Biophys Rev 2(1):13–20

    Article  CAS  PubMed  Google Scholar 

  • Lee SA, Bedford MR (2019) Inositol-an effective growth promotor? Worlds Poult Sci J 72(4):743–760

    Article  Google Scholar 

  • Liu X, Liu W, Sun Y, Xia C, Elmerich C, Xie Z (2018) A cheZ-like gene in Azorhizobium caulinodans is a key gene in the control of chemotaxis and colonization of the host plant. Appl Environ Microbiol 84(3):e01827-e1917

    Article  PubMed  PubMed Central  Google Scholar 

  • Lockman HA, Curtiss R 3rd (1990) Salmonella Typhimurium mutants lacking flagella or motility remain virulent in BALB/c mice. Infect Immun 58(1):137–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins BTF, Meirelles JL, Omori WP, Oliveira RR, Yamatogi RS, Call DR, Nero LA (2022) Comparative genomics and antibiotic resistance of Yersinia enterocolitica obtained from a pork production chain and human clinical cases in Brazil. Food Res Int 152:110917

    Article  CAS  PubMed  Google Scholar 

  • Matilla MA, Krell T (2018) The effect of bacterial chemotaxis on host infection and pathogenicity. FEMS Microbiol Rev 42(1):fux052

  • Mayr JA, Zimmermann FA, Fauth C, Bergheim C, Meierhofer D, Radmayr D, Zschocke J, Koch J, Sperl W (2011) Lipoic acid synthetase deficiency causes neonatal-onset epilepsy, defective mitochondrial energy metabolism, and glycine elevation. Am J Hum Genet 89(6):792–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng J, Bai J, Xu J, Huang C, Chen J (2019) Differential regulation of physiological activities by RcsB and OmpR in Yersinia enterocolitica. FEMS Microbiol Lett 366(17):fnz210

    Article  CAS  PubMed  Google Scholar 

  • Meng J, Bai J, Chen J (2020a) Transcriptomic analysis reveals the role of RcsB in suppressing bacterial chemotaxis, flagellar assembly and infection in Yersinia enterocolitica. Curr Genet 66(5):971–988

    Article  CAS  PubMed  Google Scholar 

  • Meng J, Huang C, Huang X, Liu D, Han B, Chen J (2020b) Osmoregulated periplasmic glucans transmit external signals through Rcs phosphorelay pathway in Yersinia enterocolitica. Front Microbiol 11:122

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng J, Xu J, Huang C, Chen J (2020c) Rcs phosphorelay responses to truncated lipopolysaccharide-induced cell envelope stress in Yersinia enterocolitica. Molecules 25(23):5718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng J, Young G, Chen J (2021) The Rcs system in Enterobacteriaceae: envelope stress responses and virulence regulation. Front Microbiol 12:627104

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller SI, Salama NR (2018) The gram-negative bacterial periplasm: size matters. PLoS Biol 16(1):e2004935

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitchell AM, Silhavy TJ (2019) Envelope stress responses: balancing damage repair and toxicity. Nat Rev Microbiol 17(7):417–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morka K, Wałecka-Zacharska E, Schubert J, Dudek B, Woźniak-Biel A, Kuczkowski M, Wieliczko A, Bystroń J, Bania J, Bugla-Płoskońska G (2021) Genetic diversity and distribution of virulence-associated genes in Y. enterocolitica and Y. enterocolitica-like isolates from humans and animals in Poland. Pathogens 10(1):65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller J, Spriewald S, Stecher B, Stadler E, Fuchs TM (2019) Evolutionary stability of Salmonella competition with the gut microbiota: how the environment fosters heterogeneity in exploitative and interference competition. J Mol Biol 431(23):4732–4748

    Article  PubMed  Google Scholar 

  • Needham BD, Trent MS (2013) Fortifying the barrier: the impact of lipid A remodelling on bacterial pathogenesis. Nat Rev Microbiol 11(7):467–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann S, Grosse K, Sourjik V (2012) Chemotactic signaling via carbohydrate phosphotransferase systems in Escherichia coli. Proc Natl Acad Sci USA 109(30):12159–12164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pepe JC, Miller VL (1993) Yersinia enterocolitica invasin: a primary role in the initiation of infection. Proc Natl Acad Sci USA 90(14):6473–7477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry EK, Meirelles LA, Newman DK (2022) From the soil to the clinic: the impact of microbial secondary metabolites on antibiotic tolerance and resistance. Nat Rev Microbiol 20(3):129–142

    Article  CAS  PubMed  Google Scholar 

  • Priyodip P, Balaji S (2018) Microbial degradation of myo-inositol hexakisphosphate (IP6): specificity, kinetics, and simulation. 3 Biotech 8(6):268

    Article  PubMed  PubMed Central  Google Scholar 

  • Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71(1):635–700

    Article  CAS  PubMed  Google Scholar 

  • Rahman A, Bonny TS, Stonsaovapak S, Ananchaipattana C (2011) Yersinia enterocolitica: epidemiological studies and outbreaks. J Pathog 2011:239391

    Article  PubMed  PubMed Central  Google Scholar 

  • Raina JB, Giardina M, Brumley DR, Clode PL, Pernice M, Guagliardo P, Bougoure J, Mendis H, Smriga S, Sonnenschein EC, Ullrich MS, Stocker R, Seymour JR (2023) Chemotaxis increases metabolic exchanges between marine picophytoplankton and heterotrophic bacteria. Nat Microbiol 8(3):510–521

    Article  CAS  PubMed  Google Scholar 

  • Ramp P, Pfleger C, Dittrich J, Mack C, Gohlke H, Bott M (2022) Physiological, biochemical, and structural bioinformatic analysis of the multiple inositol dehydrogenases from Corynebacterium glutamicum. Microbiol Spectr 10(5):e0195022

    Article  PubMed  Google Scholar 

  • Rieber N, Brand A, Hector A, Graepler-Mainka U, Ost M, Schäfer I, Wecker I, Neri D, Wirth A, Mays L, Zundel S, Fuchs J, Handgretinger R, Stern M, Hogardt M, Döring G, Riethmüller J, Kormann M, Hartl D (2013) Flagellin induces myeloid-derived suppressor cells: implications for Pseudomonas aeruginosa infection in cystic fibrosis lung disease. J Immunol 190(3):1276–1284

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld Y, Shai Y (2006) Lipopolysaccharide (endotoxin)-host defense antibacterial peptides interactions: role in bacterial resistance and prevention of sepsis. Biochim Biophys Acta 1758(9):1513–1522

    Article  CAS  PubMed  Google Scholar 

  • Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2(11):a012427

    Article  PubMed  PubMed Central  Google Scholar 

  • Siracusa L, Napoli E, Ruberto G (2022) Novel chemical and biological insights of inositol derivatives in Mediterranean plants. Molecules 27(5):1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spöring I, Felgner S, Preuße M, Eckweiler D, Rohde M, Häussler S, Weiss S, Erhardt M (2018) Regulation of flagellum biosynthesis in response to cell envelope stress in Salmonella enterica serovar Typhimurium. mBio 9(3):e00736-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun J, Rutherford ST, Silhavy TJ, Huang KC (2022) Physical properties of the bacterial outer membrane. Nat Rev Microbiol 20(4):236–248

    Article  CAS  PubMed  Google Scholar 

  • Wadhwa N, Berg HC (2022) Bacterial motility: machinery and mechanisms. Nat Rev Microbiol 20(3):161–173

    Article  CAS  PubMed  Google Scholar 

  • Weber M, Fuchs TM (2022) Metabolism in the niche: a large-scale genome-based survey reveals inositol utilization to be widespread among soil, commensal, and pathogenic bacteria. Microbiol Spectr 10(4):e0201322

    Article  PubMed  Google Scholar 

  • Young GM, Badger JL, Miller VL (2000) Motility is required to initiate host cell invasion by Yersinia enterocolitica. Infect Immun 68(7):4323–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the excellent research facilities and support provided by the Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, throughout this study.

Funding

The study was funded by the China Postdoctoral Science Foundation-funded project (2021M703439).

Author information

Authors and Affiliations

Authors

Contributions

MJ, XXX, and WX conceived the study, designed experiments, and analyzed data. WF, RFY, and MJ performed experiments and/or analyzed data. WF and RFY wrote the manuscript. WX provided the key revisions to the article. All authors reviewed and commented on the final version of the manuscript.

Corresponding authors

Correspondence to Xixian Xie or Jiao Meng.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 919 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Ren, F., Xie, X. et al. The implication of viability and pathogenicity by truncated lipopolysaccharide in Yersinia enterocolitica. Appl Microbiol Biotechnol 107, 7165–7180 (2023). https://doi.org/10.1007/s00253-023-12785-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-023-12785-w

Keywords

Navigation