Skip to main content
Log in

Antibiotic effects on gut microbiota, metabolism, and beyond

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Current advances on gut microbiota have broadened our view on host-microbiota interactions. As a microbiota-targeted approach, the use of antibiotics has been widely adopted to explore the role of gut microbiota in vivo. Antibiotics can change the microbial composition, resulting in varied effects, depending on the antibiotic class, dosage, and duration. Antibiotic intervention in early life leads to life-long phenotype alterations, including obesity. Antibiotic-induced changes in gut microbiota affect the epithelial utilization of both macronutrients (e.g., amino acids) and micronutrients (e.g., copper, vitamin E) and the redox homeostasis. Of particular interest is the regulation of gut anaerobiosis and aerobiosis by oxygen availability, which is closely related to epithelial metabolism. Additionally, antibiotic interventions enable to identify novel roles of gut microbiota in gut-liver axis and gut-brain axis. Indigenous antimicrobial molecules are produced by certain microbes, and they have the potential to affect function through eliciting changes in the gut microbiota. This review discusses at length these findings to gain a better and novel insight into microbiota-host interactions and the mechanisms involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Azevedo AC, Bento CB, Ruiz JC, Queiroz MV, Mantovani HC (2015) Distribution and genetic diversity of bacteriocin gene clusters in rumen microbial genomes. Appl Environ Microbiol 81:7290–7304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Becattini S, Taur Y, Pamer EG (2016) Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol Med 22:458–478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Behr C, Slopianka M, Haake V, Strauss V, Sperber S, Kamp H, Walk T, Beekmann K, Rietjens I, van Ravenzwaay B (2019) Analysis of metabolome changes in the bile acid pool in feces and plasma of antibiotic-treated rats. Toxicol Appl Pharmacol 363:79–87

    CAS  PubMed  Google Scholar 

  • Brussow H (2015) Growth promotion and gut microbiota: insights from antibiotic use. Environ Microbiol 17:2216–2227

    PubMed  Google Scholar 

  • Byndloss MX, Olsan EE, Rivera-Chávez F, Tiffany CR, Cevallos SA, Lokken KL, Torres TP, Byndloss AJ, Faber F, Gao Y (2017) Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science 357:570–575

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caputi V, Marsilio I, Filpa V, Cerantola S, Orso G, Bistoletti M, Paccagnella N, De Martin S, Montopoli M, Dall'Acqua S, Crema F, Di Gangi IM, Galuppini F, Lante I, Bogialli S, Rugge M, Debetto P, Giaroni C, Giron MC (2017) Antibiotic-induced dysbiosis of the microbiota impairs gut neuromuscular function in juvenile mice. Br J Pharmacol 174:3623–3639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Champagne-Jorgensen K, Kunze WA, Forsythe P, Bienenstock J, McVey Neufeld KA (2019) Antibiotics and the nervous system: more than just the microbes? Brain Behav Immun 77:7–15

    CAS  PubMed  Google Scholar 

  • Chatzispyrou IA, Held NM, Mouchiroud L, Auwerx J, Houtkooper RH (2015) Tetracycline antibiotics impair mitochondrial function and its experimental use confounds research. Cancer Res 75:4446–4449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chevalier C, Stojanovic O, Colin DJ, Suarez-Zamorano N, Tarallo V, Veyrat-Durebex C, Rigo D, Fabbiano S, Stevanovic A, Hagemann S, Montet X, Seimbille Y, Zamboni N, Hapfelmeier S, Trajkovski M (2015) Gut microbiota orchestrates energy homeostasis during cold. Cell 163:1360–1374

    CAS  PubMed  Google Scholar 

  • Dapito DH, Mencin A, Gwak GY, Pradere JP, Jang MK, Mederacke I, Caviglia JM, Khiabanian H, Adeyemi A, Bataller R, Lefkowitch JH, Bower M, Friedman R, Sartor RB, Rabadan R, Schwabe RF (2012) Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21:504–516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Desbonnet L, Clarke G, Traplin A, O’Sullivan O, Crispie F, Moloney RD, Cotter PD, Dinan TG, Cryan JF (2015) Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain Behav Immun 48:165–173

    CAS  PubMed  Google Scholar 

  • Djaldetti M, Nachmias N, Bessler H (2016) The effect of antibiotics on cytokine production by mononuclear cells and the cross-talk with colon cancer cells. J Pharm Pharmacog Res 4:134–143

    CAS  Google Scholar 

  • Espey MG (2013) Role of oxygen gradients in shaping redox relationships between the human intestine and its microbiota. Free Radic Biol Med 55:130–140

    CAS  PubMed  Google Scholar 

  • Gao K, Pi Y, Mu CL, Peng Y, Huang Z, Zhu WY (2018) Antibiotics-induced modulation of large intestinal microbiota altered aromatic amino acid profile and expression of neurotransmitters in the hypothalamus of piglets. J Neurochem 146:219–234

    CAS  PubMed  Google Scholar 

  • Gao K, Pi Y, Mu CL, Farzi A, Liu Z, Zhu WY (2019) Increasing carbohydrate availability in the hindgut promotes hypothalamic neurotransmitter synthesis: aromatic amino acids linking the microbiota-brain axis. J Neurochem 149:641–659

    CAS  PubMed  Google Scholar 

  • Garcia-Gutierrez E, Mayer MJ, Cotter PD, Narbad A (2019) Gut microbiota as a source of novel antimicrobials. Gut Microbes 10:1–21

    CAS  PubMed  Google Scholar 

  • Guida F, Turco F, Iannotta M, De Gregorio D, Palumbo I, Sarnelli G, Furiano A, Napolitano F, Boccella S, Luongo L, Mazzitelli M, Usiello A, De Filippis F, Iannotti FA, Piscitelli F, Ercolini D, de Novellis V, Di Marzo V, Cuomo R, Maione S (2018) Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice. Brain Behav Immun 67:230–245

    CAS  PubMed  Google Scholar 

  • Hildebrand F, Moitinho-Silva L, Blasche S, Jahn MT, Gossmann TI, Heuerta-Cepas J, Hercog R, Luetge M, Bahram M, Pryszlak A, Alves RJ, Waszak SM, Zhu A, Ye L, Costea PI, Aalvink S, Belzer C, Forslund SK, Sunagawa S, Hentschel U, Merten C, Patil KR, Benes V, Bork P (2019) Antibiotics-induced monodominance of a novel gut bacterial order. Gut 68:1781–1790

    PubMed  Google Scholar 

  • Hoban AE, Stilling RM, Moloney GM, Moloney RD, Shanahan F, Dinan TG, Cryan JF, Clarke G (2017) Microbial regulation of microRNA expression in the amygdala and prefrontal cortex. Microbiome 5:102

    PubMed  PubMed Central  Google Scholar 

  • Ianiro G, Tilg H, Gasbarrini A (2016) Antibiotics as deep modulators of gut microbiota: between good and evil. Gut 65:1906–1915

    CAS  PubMed  Google Scholar 

  • Inoue Y, Fukui H, Xu X, Kondo T, Kono T, Tozawa K, Ohda Y, Tomita T, Oshima T, Watari J (2018) Sa1592-Antibiotics treatment prolongs gastrointestinal transit time accompanied by increase of colonic Glp-1/Gpr43 expression. Gastroenterology 154:S-324

    Google Scholar 

  • Johnson TA, Looft T, Severin AJ, Bayles DO, Nasko DJ, Wommack KE, Howe A,Allen HK (2017) The in-feed antibiotic carbadox induces phage gene transcription in the swine gut microbiome. MBio 8:e00709-17

  • Kang JD, Myers CJ, Harris SC, Kakiyama G, Lee I-K, Yun B-S, Matsuzaki K, Furukawa M, Min H-K, Bajaj JS (2019) Bile acid 7α-dehydroxylating gut bacteria secrete antibiotics that inhibit Clostridium difficile: Role of secondary bile acids. Cell Chem Biol 26:27–34 e24

    CAS  PubMed  Google Scholar 

  • Kuno T, Hirayama-Kurogi M, Ito S, Ohtsuki S (2019) Proteomic analysis of small intestinal epithelial cells in antibiotic-treated mice: changes in drug transporters and metabolizing enzymes. Drug Metab Pharmacokinet 34(2):159–162

    CAS  PubMed  Google Scholar 

  • Leclercq S, Mian FM, Stanisz AM, Bindels LB, Cambier E, Ben-Amram H, Koren O, Forsythe P, Bienenstock J (2017) Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nat Commun 8:15062

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schäberle TF, Hughes DE, Epstein S (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517:455–459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Litvak Y, Byndloss MX, Tsolis RM, Baumler AJ (2017) Dysbiotic Proteobacteria expansion: a microbial signature of epithelial dysfunction. Curr Opin Microbiol 39:1–6

    CAS  PubMed  Google Scholar 

  • Litvak Y, Byndloss MX, Baumler AJ (2018) Colonocyte metabolism shapes the gut microbiota. Science 362(6418):eaat9076

    PubMed  PubMed Central  Google Scholar 

  • Liu J, Wu M, He J, Xiao C, Xue Y, Fu T, Lin C, Dong D, Li Z (2018) Antibiotic-induced dysbiosis of gut microbiota impairs corneal nerve regeneration by affecting CCR2-negative macrophage distribution. Am J Pathol 188:2786–2799

    CAS  PubMed  PubMed Central  Google Scholar 

  • Livanos AE, Greiner TU, Vangay P, Pathmasiri W, Stewart D, McRitchie S, Li H, Chung J, Sohn J, Kim S, Gao Z, Barber C, Kim J, Ng S, Rogers AB, Sumner S, Zhang XS, Cadwell K, Knights D, Alekseyenko A, Backhed F, Blaser MJ (2016) Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice. Nat Microbiol 1:16140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Looft T, Johnson TA, Allen HK, Bayles DO, Alt DP, Stedtfeld RD, Sul WJ, Stedtfeld TM, Chai B, Cole JR, Hashsham SA, Tiedje JM, Stanton TB (2012) In-feed antibiotic effects on the swine intestinal microbiome. Proc Natl Acad Sci U S A 109:1691–1696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Looft T, Allen HK, Cantarel BL, Levine UY, Bayles DO, Alt DP, Henrissat B, Stanton TB (2014) Bacteria, phages and pigs: the effects of in-feed antibiotics on the microbiome at different gut locations. ISME J 8:1566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe PP, Gyongyosi B, Satishchandran A, Iracheta-Vellve A, Cho Y, Ambade A, Szabo G (2018) Reduced gut microbiome protects from alcohol-induced neuroinflammation and alters intestinal and brain inflammasome expression. J Neuroinflammation 15:298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma C, Han M, Heinrich B, Fu Q, Zhang Q, Sandhu M, Agdashian D, Terabe M, Berzofsky JA, Fako V, Ritz T, Longerich T, Theriot CM, McCulloch JA, Roy S, Yuan W, Thovarai V, Sen SK, Ruchirawat M, Korangy F, Wang XW, Trinchieri G,Greten TF (2018) Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360:eaan5931

    PubMed  PubMed Central  Google Scholar 

  • Manrique P, Bolduc B, Walk ST, van der Oost J, de Vos WM, Young MJ (2016) Healthy human gut phageome. Proc Natl Acad Sci U S A 113:10400–10405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller KA, Vicentini FA, Hirota SA, Sharkey KA, Wieser ME (2019) Antibiotic treatment affects the expression levels of copper transporters and the isotopic composition of copper in the colon of mice. Proc Natl Acad Sci U S A 116:5955–5960

    CAS  PubMed  PubMed Central  Google Scholar 

  • Modi SR, Lee HH, Spina CS, Collins JJ (2013) Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature 499:219–222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mu C, Yang Y, Zhu W (2016) Gut microbiota: the brain peacekeeper. Front Microbiol 7:345

    PubMed  PubMed Central  Google Scholar 

  • Mu C, Yang Y, Su Y, Zoetendal EG, Zhu W (2017a) Differences in microbiota membership along the gastrointestinal tract of piglets and their differential alterations following an early-life antibiotic intervention. Front Microbiol 8:797

    PubMed  PubMed Central  Google Scholar 

  • Mu C, Yang Y, Yu K, Yu M, Zhang C, Su Y, Zhu W (2017b) Alteration of metabolomic markers of amino-acid metabolism in piglets with in-feed antibiotics. Amino Acids 49:771–781

    CAS  PubMed  Google Scholar 

  • Nogacka AM, Salazar N, Arboleya S, Suarez M, Fernandez N, Solis G, de Los Reyes-Gavilan CG, Gueimonde M (2018) Early microbiota, antibiotics and health. Cell Mol Life Sci 75:83–91

    CAS  PubMed  Google Scholar 

  • Olishevska S, Nickzad A, Deziel E (2019) Bacillus and Paenibacillus secreted polyketides and peptides involved in controlling human and plant pathogens. Appl Microbiol Biotechnol 103:1189–1215

    CAS  PubMed  Google Scholar 

  • Ooijevaar RE, Terveer EM, Verspaget HW, Kuijper EJ, Keller JJ (2019) Clinical application and potential of fecal microbiota transplantation. Annu Rev Med 70:335–351

    CAS  PubMed  Google Scholar 

  • Palleja A, Mikkelsen KH, Forslund SK, Kashani A, Allin KH, Nielsen T, Hansen TH, Liang S, Feng Q, Zhang C, Pyl PT, Coelho LP, Yang H, Wang J, Typas A, Nielsen MF, Nielsen HB, Bork P, Wang J, Vilsboll T, Hansen T, Knop FK, Arumugam M, Pedersen O (2018) Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat Microbiol 3:1255–1265

    CAS  PubMed  Google Scholar 

  • Pi Y, Gao K, Peng Y, Mu CL, Zhu WY (2019) Antibiotic-induced alterations of the gut microbiota and microbial fermentation in protein parallel the changes in host nitrogen metabolism of growing pigs. Animal 13:262–272

    CAS  PubMed  Google Scholar 

  • Ran L, Liu AB, Lee MJ, Xie P, Lin Y, Yang CS (2019) Effects of antibiotics on degradation and bioavailability of different vitamin E forms in mice. Biofactors 45:450–462

    CAS  PubMed  Google Scholar 

  • Reese AT, Cho EH, Klitzman B, Nichols SP, Wisniewski NA, Villa MM, Durand HK, Jiang S, Midani FS, Nimmagadda SN, O’Connell TM, Wright JP, Deshusses MA,David LA (2018) Antibiotic-induced changes in the microbiota disrupt redox dynamics in the gut. Elife 7:e35987

  • Rivera-Chavez F, Zhang LF, Faber F, Lopez CA, Byndloss MX, Olsan EE, Xu G, Velazquez EM, Lebrilla CB, Winter SE, Baumler AJ (2016) Depletion of butyrate-producing Clostridia from the gut microbiota drives an aerobic luminal expansion of Salmonella. Cell Host Microbe 19:443–454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rizzatti G, Ianiro G, Gasbarrini A (2018) Antibiotic and modulation of microbiota: a new paradigm? J Clin Gastroenterol 52:S74–S77

    PubMed  Google Scholar 

  • Roychowdhury S, Cadnum J, Glueck B, Obrenovich M, Donskey C, Cresci GAM (2018) Faecalibacterium prausnitzii and a prebiotic protect intestinal health in a mouse model of antibiotic and Clostridium difficile exposure. JPEN J Parenter Enteral Nutr 42:1156–1167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schulfer AF, Battaglia T, Alvarez Y, Bijnens L, Ruiz VE, Ho M, Robinson S, Ward T, Cox LM, Rogers AB, Knights D, Sartor RB, Blaser MJ (2018) Intergenerational transfer of antibiotic-perturbed microbiota enhances colitis in susceptible mice. Nat Microbiol 3:234–242

    CAS  PubMed  Google Scholar 

  • Schulfer AF, Schluter J, Zhang Y, Brown Q, Pathmasiri W, McRitchie S, Sumner S, Li H, Xavier JB, Blaser MJ (2019) The impact of early-life sub-therapeutic antibiotic treatment (STAT) on excessive weight is robust despite transfer of intestinal microbes. ISME J 13(5):1280–1292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sherwin E, Dinan TG, Cryan JF (2018) Recent developments in understanding the role of the gut microbiota in brain health and disease. Ann N Y Acad Sci 1420:5–25

    PubMed  Google Scholar 

  • Soto M, Herzog C, Pacheco JA, Fujisaka S, Bullock K, Clish CB, Kahn CR (2018) Gut microbiota modulate neurobehavior through changes in brain insulin sensitivity and metabolism. Mol Psychiatry 23:2287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sprockett D, Fukami T, Relman DA (2018) Role of priority effects in the early-life assembly of the gut microbiota. Nat Rev Gastroenterol Hepatol 15:197–205

    PubMed  PubMed Central  Google Scholar 

  • Stanisavljevic S, Cepic A, Bojic S, Veljovic K, Mihajlovic S, Dedovic N, Jevtic B, Momcilovic M, Lazarevic M, Mostarica Stojkovic M, Miljkovic D, Golic N (2019) Oral neonatal antibiotic treatment perturbs gut microbiota and aggravates central nervous system autoimmunity in Dark Agouti rats. Sci Rep 9:918

    PubMed  PubMed Central  Google Scholar 

  • Stark CM, Susi A, Emerick J, Nylund CM (2019) Antibiotic and acid-suppression medications during early childhood are associated with obesity. Gut 68:62–69

    CAS  PubMed  Google Scholar 

  • Suter PM, Golner BB, Goldin BR, Morrow FD, Russell RM (1991) Reversal of protein-bound vitamin B12 malabsorption with antibiotics in atrophic gastritis. Gastroenterology 101:1039–1045

    CAS  PubMed  Google Scholar 

  • Swann JR, Want EJ, Geier FM, Spagou K, Wilson ID, Sidaway JE, Nicholson JK, Holmes E (2011) Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc Natl Acad Sci U S A 108(Suppl 1):4523–4530

    CAS  PubMed  Google Scholar 

  • Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R, Schnabl B, Knight R (2018) The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 15:397–411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ubeda C, Pamer EG (2012) Antibiotics, microbiota, and immune defense. Trends Immunol 33:459–466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vrieze A, Out C, Fuentes S, Jonker L, Reuling I, Kootte RS, van Nood E, Holleman F, Knaapen M, Romijn JA, Soeters MR, Blaak EE, Dallinga-Thie GM, Reijnders D, Ackermans MT, Serlie MJ, Knop FK, Holst JJ, van der Ley C, Kema IP, Zoetendal EG, de Vos WM, Hoekstra JB, Stroes ES, Groen AK, Nieuwdorp M (2014) Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J Hepatol 60:824–831

    CAS  PubMed  Google Scholar 

  • Xiao H, Shao F, Wu M, Ren W, Xiong X, Tan B, Yin Y (2015) The application of antimicrobial peptides as growth and health promoters for swine. J Anim Sci Biotechnol 6:19

    PubMed  PubMed Central  Google Scholar 

  • Yu M, Mu C, Yang Y, Zhang C, Su Y, Huang Z, Yu K, Zhu W (2017a) Increases in circulating amino acids with in-feed antibiotics correlated with gene expression of intestinal amino acid transporters in piglets. Amino Acids 49:1587–1599

    CAS  PubMed  Google Scholar 

  • Yu M, Zhang C, Yang Y, Mu C, Su Y, Yu K, Zhu W (2017b) Long-term effects of early antibiotic intervention on blood parameters, apparent nutrient digestibility, and fecal microbial fermentation profile in pigs with different dietary protein levels. J Anim Sci Biotechnol 8:60

    PubMed  PubMed Central  Google Scholar 

  • Zarrinpar A, Chaix A, Xu ZZ, Chang MW, Marotz CA, Saghatelian A, Knight R, Panda S (2018) Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism. Nat Commun 9:2872

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by the Natural Science Foundation of China (31430082) and National Key Basic Research Program of China (2013CB127300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiyun Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, C., Zhu, W. Antibiotic effects on gut microbiota, metabolism, and beyond. Appl Microbiol Biotechnol 103, 9277–9285 (2019). https://doi.org/10.1007/s00253-019-10165-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10165-x

Keywords

Navigation