Skip to main content

Advertisement

Log in

Structural modification of cuminaldehyde thiosemicarbazone increases inhibition specificity toward aflatoxin biosynthesis and sclerotia development in Aspergillus flavus

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Aspergillus flavus is an opportunistic mold that represents a serious threat for human and animal health due to its ability to synthesize and release, on food and feed commodities, different toxic secondary metabolites. Among them, aflatoxin B1 is one of the most dangerous since it is provided with a strong cancerogenic and mutagenic activity. Controlling fungal contamination on the different crops that may host A. flavus is considered a priority by sanitary authorities of an increasing number of countries due also to the fact that, owing to global temperature increase, the geographic areas that are expected to be prone to experience sudden A. flavus outbreaks are widening. Among the different pre- and post-harvest strategies that may be put forward in order to prevent fungal and/or mycotoxin contamination, fungicides are still considered a prominent weapon. We have here analyzed different structural modifications of a natural-derived compound (cuminaldehyde thiosemicarbazone) for their fungistatic and anti-aflatoxigenic activity. In particular, we have focused our attention on one of the compound that presented a prominent anti-aflatoxin specificity, and performed a set of physiological and molecular analyses, taking also advantage of yeast (Saccharomyces cerevisiae) cell as an experimental model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbas HK, Wilkinson J, Zablotowicz R, Accinelli C, Abel C, Bruns H, Weaver M (2009) Ecology of Aspergillus flavus, regulation of aflatoxin production, and management strategies to reduce aflatoxin contamination of corn. Toxin Rev 28:142–153. doi:10.1080/15569540903081590

    Article  CAS  Google Scholar 

  • Amaike S, Keller NP (2011) Aspergillus flavus. Annu Rev Phytopathol 49:107–133. doi:10.1146/annurev-phyto-072910-095221

    Article  CAS  PubMed  Google Scholar 

  • Amare MG, Keller NP (2014) Molecular mechanisms of Aspergillus flavus secondary metabolism and development. Fungal Genet Biol 66:11–18. doi:10.1016/j.fgb.2014.02.008

    Article  CAS  PubMed  Google Scholar 

  • Anderson JB (2005) Evolution of antifungal-drug resistance: mechanisms and pathogen fitness. Nat Rev Microbiol 3:547–556. doi:10.1038/nrmicro1179

    Article  CAS  PubMed  Google Scholar 

  • Baruffini E, Lodi T, Dallabona C, Puglisi A, Zeviani M, Ferrero I (2006) Genetic and chemical rescue of the Saccharomyces cerevisiae phenotype induced by mitochondrial DNA polymerase mutations associated with progressive external ophthalmoplegia in humans. Hum Mol Genet 15:2846–2855

    Article  CAS  PubMed  Google Scholar 

  • Baruffini E, Ferrero I, Foury F (2010) In vivo analysis of mtDNA replication defects in yeast. Methods 51:426–436

    Article  CAS  PubMed  Google Scholar 

  • Baruffini E, Serafini F, Ferrero I, Lodi T (2012) Overexpression of DNA polymerase zeta reduces the mitochondrial mutability caused by pathological mutations in DNA polymerase gamma in yeast. PLoS One 7:19–28. doi:10.1371/journal.pone.0034322

    Article  Google Scholar 

  • Bayram Ö, Braus GH (2012) Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev 36:1–24. doi:10.1111/j.1574-6976.2011.00285.x

    Article  CAS  PubMed  Google Scholar 

  • Beraldo H, Gambino D (2004) The wide pharmacological versatility of semicarbazones, thiosemicarbazones and their metal complexes. Mini Rev Med Chem 4:31–39. doi:10.2174/1389557043487484

    Article  CAS  PubMed  Google Scholar 

  • Bisceglie F, Pinelli S, Alinovi R, Goldoni M, Mutti A, Camerini A, Piola L, Tarasconi P, Pelosi G, Zwack PJ (2014) Cinnamaldehyde and cuminaldehyde thiosemicarbazones and their copper(II) and nickel(II) complexes: a study to understand their biological activity. J Inorg Biochem 140:111–125

    Article  CAS  PubMed  Google Scholar 

  • Bok JW, Keller NP (2004) LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell 3:527–535. doi:10.1128/EC.3.2.527-535.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brachman CB, Davies A, Cost GJ, Caputo E, Li J, Hiater P, Boeke JD (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Caceres I, El Khoury R, Medina Á, Lippi Y, Naylies C, Atoui A, El Khoury A, Oswald I, Bailly J-D, Puel O (2016) Deciphering the anti-aflatoxinogenic properties of eugenol using a large-scale q-PCR approach. Toxins 8:123. doi:10.3390/toxins8050123

    Article  PubMed Central  Google Scholar 

  • Calvo AM, Cary JW (2015) Association of fungal secondary metabolism and sclerotial biology. Front Microbiol 6:62. doi:10.3389/fmicb.2015.00062

    Article  PubMed  PubMed Central  Google Scholar 

  • Cantrell CL, Dayan FE, Duke SO (2012) Natural products as sources for new pesticides. J Nat Prod 75:1231–1242. doi:10.1021/np300024u

    Article  CAS  PubMed  Google Scholar 

  • Cary JW, Harris-Coward PY, Ehrlich KC, Mack BM, Kale SP, Larey C, Calvo AM (2012) NsdC and NsdD affect Aspergillus flavus morphogenesis and aflatoxin production. Eukaryot Cell 11:1104–1111. doi:10.1128/EC.00069-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chitarrini G, Nobili C, Pinzari F, Antonini A, De Rossi P, Del Fiore A, Procacci S, Tolaini V, Scala V, Scarpari M, Reverberi M (2014) Buckwheat achenes antioxidant profile modulates Aspergillus flavus growth and aflatoxin production. Int J Food Microbiol 189:1–10. doi:10.1016/j.ijfoodmicro.2014.07.029

    Article  CAS  PubMed  Google Scholar 

  • Choi CW, Kim SC, Hwang SS, Choi BK, Ahn HJ, Lee MY, Park SH, Kim SK (2002) Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Sci 163:1161–1168

    Article  CAS  Google Scholar 

  • Cooper J, Dobson H (2007) The benefits of pesticides to mankind and the environment. Crop Prot 26:1337–1348

    Article  CAS  Google Scholar 

  • Degola F, Berni E, Restivo FM (2011) Laboratory tests for assessing efficacy of atoxigenic Aspergillus flavus strains as biocontrol agents. Int J Food Microbiol 146:235–243. doi:10.1016/j.ijfoodmicro.2011.02.020

    Article  PubMed  Google Scholar 

  • Degola F, Dall’Asta C, Restivo FM (2012) Development of a simple and high-throughput method for detecting aflatoxins production in culture media. Lett Appl Microbiol 55:82–89. doi:10.1111/j.1472-765X.2012.03264.x

    Article  CAS  PubMed  Google Scholar 

  • Degola F, Morcia C, Bisceglie F, Mussi F, Tumino G, Ghizzoni R, Pelosi G, Terzi V, Buschini A, Restivo FM, Lodi T (2015) In vitro evaluation of the activity of thiosemicarbazone derivatives against mycotoxigenic fungi affecting cereals. Int J Food Microbiol 200:104–111. doi:10.1016/j.ijfoodmicro.2015.02.009

    Article  CAS  PubMed  Google Scholar 

  • Duran RM, Cary JW, Calvo AM (2007) Production of cyclopiazonic acid, aflatrem, and aflatoxin by Aspergillus flavus is regulated by veA, a gene necessary for sclerotial formation. Appl Microbiol Biotechnol 73:1158–1168. doi:10.1007/s00253-006-0581-5

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich KC, Yu J, Cotty PJ (2005) Aflatoxin biosynthesis gene clusters and flanking regions. J Appl Microbiol 99:518–527. doi:10.1111/j.1365-2672.2005.02637.x

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich KC, Moore GG, Mellon JE, Bhatnagar D (2015) Challenges facing the biological control strategy for eliminating aflatoxin contamination. World Mycotoxin J 8:225–233. doi:10.3920/WMJ2014.1696

    Article  Google Scholar 

  • Ferreira FD, Kemmelmeier C, Arrotéia CC, Da Costa CL, Mallmann CA, Janeiro V, Ferreira FMD, Mossini SAG, Silva EL, Machinski M (2013) Inhibitory effect of the essential oil of Curcuma longa L. and curcumin on aflatoxin production by Aspergillus flavus Link. Food Chem 136:789–793. doi:10.1016/j.foodchem.2012.08.003

    Article  CAS  PubMed  Google Scholar 

  • Gilbert MK, Mack BM, Wei Q, Bland JM, Bhatnagar D, Cary JW (2016) RNA sequencing of an nsdC mutant reveals global regulation of secondary metabolic gene clusters in Aspergillus flavus. Microbiol Res 182:150–161. doi:10.1016/j.micres.2015.08.007

    Article  CAS  PubMed  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics Software Package for education and data analysis. Palaeontol Electron 4(1):1–9

    Google Scholar 

  • Jahanshiri Z, Shams-Ghahfarokhi M, Allameh A, Razzaghi-Abyaneh M (2015) Inhibitory effect of eugenol on aflatoxin B1 production in Aspergillus parasiticus by downregulating the expression of major genes in the toxin biosynthetic pathway. World J Microbiol Biotechnol 31:1071–1078. doi:10.1007/s11274-015-1857-7

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Campbell BC, Yu J, Mahoney N, Chan KL, Molyneux RJ, Bhatnagar D, Cleveland TE (2005) Examination of fungal stress response genes using Saccharomyces cerevisiae as a model system: targeting genes affecting aflatoxin biosynthesis by Aspergillus flavus Link. Appl Microbiol Biotechnol 67:807–815. doi:10.1007/s00253-004-1821-1

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Yu J, Mahoney N, Chan KL, Molyneux RJ, Varga J, Bhatnagar D, Cleveland TE, Nierman WC, Campbell BC (2008) Elucidation of the functional genomics of antioxidant-based inhibition of aflatoxin biosynthesis. Int J Food Microbiol 122:49–60. doi:10.1016/j.ijfoodmicro.2007.11.058

    Article  CAS  PubMed  Google Scholar 

  • Kondo T, Sakurada M, Okamoto S, Ono M, Tsukigi H, Suzuki A, Nagasawa H, Sakuda S (2001) Effects of aflastatin A, an inhibitor of aflatoxin production, on aflatoxin biosynthetic pathway and glucose metabolism in Aspergillus parasiticus. J Antibiot 54:650–657

    Article  CAS  PubMed  Google Scholar 

  • Liang D, Xing F, Selvaraj JN, Liu X, Wang L, Hua H, Zhou L, Zhao Y, Wang Y, Liu Y (2015) Inhibitory effect of cinnamaldehyde, citral, and eugenol on aflatoxin biosynthetic gene expression and aflatoxin B1 biosynthesis in Aspergillus flavus. J Food Sci 80:2917–2924. doi:10.1111/1750-3841.13144

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔ C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Michailides T (2005) Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Prot 24:853–863

    Article  CAS  Google Scholar 

  • Medina A, Rodriguez A, Magan N (2014) Effect of climate change on Aspergillus flavus and aflatoxin B1 production. Front Microbiol 5:1–7. doi:10.3389/fmicb.2014.00348

    Article  CAS  Google Scholar 

  • Nesci A, Ferrari L, Etcheverry M (2008) Effect of synthetic antioxidants on stored maize grain mycoflora in situ. J Sci Food Agric 88:797–804

    Article  CAS  Google Scholar 

  • Passone MA, Rosso LC, Etcheverry M (2012) Influence of sub-lethal antioxidant doses, water potential and temperature on growth, sclerotia, aflatoxins and aflD (=nor-1) expression by Aspergillus flavus RCP08108. Microbiol Res 167:470–477. doi:10.1016/j.micres.2011.11.004

    Article  CAS  PubMed  Google Scholar 

  • Pelosi G (2010) Thiosemicarbazone metal complexes: from structure to activity. Open Crystallog J 3:16–28

    Article  CAS  Google Scholar 

  • Reverberi M, Fabbri A, Zjalic S, Ricelli A, Punelli F, Fanelli C (2005) Antioxidant enzymes stimulation in Aspergillus parasiticus by Lentinula edodes inhibits aflatoxin production. Appl Microbiol Biotechnol 69:207–215. doi:10.1007/s00253-005-1979-1

    Article  CAS  PubMed  Google Scholar 

  • Reverberi M, Punelli M, Smith CA, Zjalic S, Scarpari M, Scala V, Cardinali G, Aspite N, Pinzari F, Payne G, Fabbri A, Fanelli C (2012) How peroxisomes affect aflatoxin biosynthesis in Aspergillus flavus. PLoS One 7:1–15. doi:10.1371/journal.pone.0048097

    Article  Google Scholar 

  • Roze LV, Chanda A, Laivenieks M, Beaudry RM, Artymovich K, Koptina AV, Awad DW, Valeeva D, Jones AD, Linz JE (2010) Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism. BMC Biochem 11:33. doi:10.1186/1471-2091-11-33

    Article  PubMed  PubMed Central  Google Scholar 

  • Roze LV, Hong S-Y, Linz JE (2013) Aflatoxin biosynthesis: current frontiers. Annu Rev Food Sci Technol 4:293–311. doi:10.1146/annurev-food-083012-123702

    Article  CAS  PubMed  Google Scholar 

  • Roze LV, Laivenieks M, Hong SY, Wee J, Wong SS, Vanos B, Awad D, Ehrlich KC, Linz JE (2015) Aflatoxin biosynthesis is a novel source of reactive oxygen species—a potential redox signal to initiate resistance to oxidative stress? Toxins 7:1411–1430. doi:10.3390/toxins7051411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuda S, Ono M, Ikeda H (2000) Blasticidin A as an inhibitor of aflatoxin production by Aspergillus parasiticus. J Antibiot (Tokyo) 53:1265–1271

    Article  CAS  Google Scholar 

  • Sun Q, Wang L, Lu Z, Liu Y (2015) In vitro anti-aflatoxigenic effect and mode of action of cinnamaldehyde against aflatoxin B1. Int Biodeterior Biodegrad 104:419–425. doi:10.1016/j.ibiod.2015.07.009

    Article  CAS  Google Scholar 

  • Thomas B, Rothstein R (1989) The genetic control of direct-repeat recombination in Saccharomyces: the effect of rad52 and rad1 on mitotic recombination at GAL10, a transcriptionally regulated gene. Genetics 123:725–738

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yabe K, Nakajima H (2004) Enzyme reactions and genes in aflatoxin biosynthesis. Appl Microbiol Biotechnol 64:745–755. doi:10.1007/s00253-004-1566-x

    Article  CAS  PubMed  Google Scholar 

  • Yan S, Liang Y, Zhang J, Chen Z, Liu C-M (2015) Autoxidated linolenic acid inhibits aflatoxin biosynthesis in Aspergillus flavus via oxylipin species. Fungal Genet Biol 81:829–837. doi:10.1016/j.fgb.2014.11.005

    Article  Google Scholar 

  • Yoshinari T, Noda Y, Yoda K, Sezaki H, Nagasawa H, Sakuda S (2010) Inhibitory activity of blasticidin A, a strong aflatoxin production inhibitor, on protein synthesis of yeast: selective inhibition of aflatoxin production by protein synthesis inhibitors. J Antibiot 63:309–314. doi:10.1038/ja.2010.36

    Article  CAS  PubMed  Google Scholar 

  • Yoshinari T, Sakuda S, Watanabe M, Kamata Y, Ohnishi T, Sugita-Konishi Y (2013) New metabolic pathway for converting blasticidin S in Aspergillus flavus and inhibitory activity of aflatoxin production by blasticidin S metabolites. J Agric Food Chem 61:7925–7931

    Article  CAS  PubMed  Google Scholar 

  • Yu J (2012) Current understanding on aflatoxin biosynthesis and future perspective in reducing aflatoxin contamination. Toxins 4:1024–1057. doi:10.3390/toxins4111024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaccaria M, Ludovici M, Sanzani SM, Ippolito A, Cigliano RA, Sanseverino W, Scarpari M, Scala V, Fanelli C, Reverberi M (2015) Menadione-induced oxidative stress re-shapes the oxylipin profile of Aspergillus flavus and its lifestyle. Toxins 7:4315–4329. doi:10.3390/toxins7104315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding has been provided for this research by Fondazione CARIPLO (Grant. No 2014-0555). We are indebted to Matteo Manfredini and Gessica Gorbi for their help on statistical analysis, to Enrico Baruffini for providing the MIP1 yeast mutants, and to Antonietta Cirasolo and Roberto Silva for their technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Maria Restivo.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 135 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Degola, F., Bisceglie, F., Pioli, M. et al. Structural modification of cuminaldehyde thiosemicarbazone increases inhibition specificity toward aflatoxin biosynthesis and sclerotia development in Aspergillus flavus . Appl Microbiol Biotechnol 101, 6683–6696 (2017). https://doi.org/10.1007/s00253-017-8426-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8426-y

Keywords

Navigation