Skip to main content
Log in

The influence of bisphenol A on mammalian cell cultivation

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bisphenol A (BPA) plays a substantial role in industry, as it is used for polycarbonate (PC) plastics and epoxy resins which are required for various plastic consumer products. However, BPA is known to be an endocrine disruptor, and its influence on humans, animals, and various cell lines was addressed in diverse studies. As the burden of BPA can be increased by using disposable plastic articles and single-use technologies for cultivation, it is essential to examine the consequences of BPA presence on mammalian cells, as they are a contributing factor in the production of complex pharmaceutical therapeutics. We selected three industrially relevant cell lines and analyzed systemic effects of BPA by comparing cell culture performance in BPA-free poly-ethylene terephthalate glycol (PETG) and in PC shaking flasks. We focused on the influence of BPA on cellular growth, viability, and several metabolic parameters. In addition, we determined the product concentration and aggregation behavior of the recombinant proteins expressed by these cell lines and the BPA concentration within the medium caused by leaching. Moreover, we performed EC50 studies to determine the toxic concentration of BPA. Our results indicated that leached BPA had no effect on specific growth rates and viability and toxicity appeared at about 104 times higher concentrations; however, it influenced the specific productivity rate and metabolic activity parameters of our Chinese hamster ovary (CHO) cell line. Consequently, one can neglect BPA from leaching in the culture as long as the selected cell line is BPA tolerant. Otherwise, BPA can be a hurdle for pharmaceutical production, as it can influence the specific productivity of recombinant proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altamirano CB, Berrios J, Vergara M, Becerra, S. (2013) Advances in improving mammalian cells metabolism for recombinant protein production. Electron J Biotechnol. 16(3) doi:10.2225/vol16-issue3-fulltext-2

  • Audebert M, Dolo L, Perdu E, Cravedi JP, Zalko D (2011) Use of the gammaH2AX assay for assessing the genotoxicity of bisphenol A and bisphenol F in human cell lines. Arch Toxicol 85(11):1463–1473. doi:10.1007/s00204-011-0721-2

    Article  PubMed  CAS  Google Scholar 

  • Baldi L, Hacker DL, Adam M, Wurm FM (2007) Recombinant protein production by large-scale transient gene expression in mammalian cells: state of the art and future perspectives. Biotechnol Lett 29(5):677–684. doi:10.1007/s10529-006-9297-y

    Article  PubMed  CAS  Google Scholar 

  • Benachour N, Moslemi S, Sipahutar H, Seralini G-E (2007) Cytotoxic effects and aromatase inhibition by xenobiotic endocrine disrupters alone and in combination. Toxicol Appl Pharmacol 222(2):129-140 doi:http://dx.doi.org/10.1016/j.taap.2007.03.033

  • Birch JR, Onakunle Y (2005) Biopharmaceutical proteins: opportunities and challenges. Methods Mol Biol 308:1–16. doi:10.1385/1-59259-922-2:001

    PubMed  CAS  Google Scholar 

  • Chu L, Robinson DK (2001) Industrial choices for protein production by large-scale cell culture. Currt Opin Biotechnol 12(2):180–187

    Article  CAS  Google Scholar 

  • Consulting MRa (2014) Bisphenol A (BPA): 2014 World Market Outlook and Forecast up to 2018. p 165

  • Eladak S, Grisin T, Moison D, Guerquin M-J, N’Tumba-Byn T, Pozzi-Gaudin S, Benachi A, Livera G, Rouiller-Fabre V, Habert R (2015) A new chapter in the bisphenol A story: bisphenol S and bisphenol F are not safe alternatives to this compound. Fertil and Steril 103(1):11-21 doi:http://dx.doi.org/10.1016/j.fertnstert.2014.11.005

  • Essers R, Kewes H, Schiedner G (2011) Improving volumetric productivity of a stable human CAP cell line by bioprocess optimization. BMC Proc 5(Suppl 8):P66

    Article  PubMed  PubMed Central  Google Scholar 

  • Fic A, Zegura B, Sollner Dolenc M, Filipic M, Peterlin Masic L (2013) Mutagenicity and DNA damage of bisphenol A and its structural analogues in HepG2 cells. Arh Hig Rada Toksikol 64(2):3–14. doi:10.2478/10004-1254-64-2013-2319

    Article  Google Scholar 

  • Fischer S, Charara N, Gerber A, Wolfel J, Schiedner G, Voedisch B, Geisse S (2012) Transient recombinant protein expression in a human amniocyte cell line: the CAP-T(R) cell system. Biotechnol Bioeng 109(9):2250–2261. doi:10.1002/bit.24514

    Article  PubMed  CAS  Google Scholar 

  • Flint S, Markle T, Thompson S, Wallace E (2012) Bisphenol A exposure, effects, and policy: a wildlife perspective. J Environ Manage 104:19–34. doi:10.1016/j.jenvman.2012.03.021

    Article  PubMed  CAS  Google Scholar 

  • Hilliard CA, Armstrong MJ, Bradt CI, Hill RB, Greenwood SK, Galloway SM (1998) Chromosome aberrations in vitro related to cytotoxicity of nonmutagenic chemicals and metabolic poisons. Environ Mol Mutagen 31(4):316–326

    Article  PubMed  CAS  Google Scholar 

  • Howdeshell KL, Peterman PH, Judy BM, Taylor JA, Orazio CE, Ruhlen RL, Vom Saal FS, Welshons WV (2003) Bisphenol A is released from used polycarbonate animal cages into water at room temperature. Environ Health Perspect 111(9):1180–1187

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ivett JL, Brown BM, Rodgers C, Anderson BE, Resnick MA, Zeiger E (1989) Chromosomal aberrations and sister chromatid exchange tests in Chinese hamster ovary cells in vitro. IV. Results with 15 chemicals. Environ Mol Mutagen 14(3):165–187

    Article  PubMed  CAS  Google Scholar 

  • Jayapal KPWKF, Yap MGS, Hu W-S (2007) Recombinant protein therapeutics from CHO cells—20 years and counting. Chem Eng Prog 103(7):40–47

    CAS  Google Scholar 

  • Joo WA, Lee DY, Kim CW (2003) Development of an effective sample preparation method for the proteome analysis of body fluids using 2-D gel electrophoresis. Biosci Biotechnol Biochem 67(7):1574–1577. doi:10.1271/bbb.67.1574

    Article  PubMed  CAS  Google Scholar 

  • Kang J-H, Kondo F, Katayama Y (2006a) Human exposure to bisphenol A. Toxicology 226(2–3):79-89 doi:http://dx.doi.org/10.1016/j.tox.2006.06.009

  • Kang JH, Katayama Y, Kondo F (2006b) Biodegradation or metabolism of bisphenol A: from microorganisms to mammals. Toxicology 217(2-3):81–90. doi:10.1016/j.tox.2005.10.001

    Article  PubMed  CAS  Google Scholar 

  • Krishnan AV, Stathis P, Permuth SF, Tokes L, Feldman D (1993) Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology 132(6):2279-2286 doi:10.1210/endo.132.6.8504731

  • Lai T, Yang Y, Ng SK (2013) Advances in mammalian cell line development technologies for recombinant protein production. Pharmaceuticals 6(5):579–603. doi:10.3390/ph6050579

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Le HH, Carlson EM, Chua JP, Belcher SM (2008) Bisphenol A is released from polycarbonate drinking bottles and mimics the neurotoxic actions of estrogen in developing cerebellar neurons. Toxicol Lett 176(2):149-156 doi:10.1016/j.toxlet.2007.11.001

  • Lee D-Y, Lee S-S, Joo W-A, Lee E-J, Kim C-W (2004) Analysis of differentially regulated proteins in TM4 cells treated with bisphenol A. Biosci Biotechnol Biochem 68(6):1201–1208. doi:10.1271/bbb.68.1201

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Sun X, Qiu L, Wei J, Huang Q, Fang C, Ye T, Kang M, Shen H, Dong S (2013) Exposure to bisphenol A induces dysfunction of insulin secretion and apoptosis through the damage of mitochondria in rat insulinoma (INS-1) cells. Cell Death Dis 4, e460

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Michalowicz J (2014) Bisphenol A—sources, toxicity and biotransformation. Environ Toxicol Pharmacol 37(2):738–758. doi:10.1016/j.etap.2014.02.003

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa Y, Tayama S (2000) Metabolism and cytotoxicity of bisphenol A and other bisphenols in isolated rat hepatocytes. Arch Toxicol 74(2):99–105

    Article  PubMed  CAS  Google Scholar 

  • Paul AJ, Schwab K, Hesse F (2014) Direct analysis of mAb aggregates in mammalian cell culture supernatant. BMC Biotechnol 14(1):99. doi:10.1186/s12896-014-0099-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Pham PL, Kamen A, Durocher Y (2006) Large-scale transfection of mammalian cells for the fast production of recombinant protein. Mol Biotechnol 34(2):225–237. doi:10.1385/MB:34:2:225

    Article  PubMed  CAS  Google Scholar 

  • PRweb (2014) Global BPA production to exceed 5.4 mln tonnes by 2015, according to in-demand report by Merchant Research & Consulting Publisher. http://www.prweb.com/releases/2014/04/prweb11761146.htm 2015

  • Rader RA, Langer ES (2012) Upstream single-use bioprocessing systems: future market trends and growth assessment. BioProcess Int 10(2):12–18

    Google Scholar 

  • Rasheed A, Kola RK, Yalavarthy PD (2013) Assessment of antibacterial activity of bisphenol a (4,4’-isopropylidenebisphenol). Int J Innov Res Sci Eng Technol 2(11):6003–6008

    Google Scholar 

  • Sajiki J, Takahashi K, Yonekubo J (1999) Sensitive method for the determination of bisphenol-A in serum using two systems of high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 736(1-2):255–261

    Article  PubMed  CAS  Google Scholar 

  • Schug TT, Janesick A, Blumberg B, Heindel JJ (2011) Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol 127(3-5):204–215. doi:10.1016/j.jsbmb.2011.08.007

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Swiech K, Picanco-Castro V, Covas DT (2012) Human cells: new platform for recombinant therapeutic protein production. Protein Expr Purif 84(1):147–153. doi:10.1016/j.pep.2012.04.023

    Article  PubMed  CAS  Google Scholar 

  • Tayama S, Nakagawa Y, Tayama K (2008) Genotoxic effects of environmental estrogen-like compounds in CHO-K1 cells. Mutat Res 649(1-2):114–125. doi:10.1016/j.mrgentox.2007.08.006

    Article  PubMed  CAS  Google Scholar 

  • Thüte T (2012) Untersuchung der Hyperproduktivität tierischer Zellkulturen mittels metabolomics-Techniken als Tool der funktionellen Genomanalyse. Dissertation. University of Bielefeld, Germany

    Google Scholar 

  • Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV (2007) Human exposure to bisphenol A (BPA). Reprod Toxicol 24(2):139-177 doi:10.1016/j.reprotox.2007.07.010

  • vom Saal FS, Hughes C (2005) An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment. Environ Health Perspect 113(8):926–933. doi:10.1289/ehp.7713

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ye X, Zhou X, Hennings R, Kramer J, Calafat AM (2013) Potential external contamination with bisphenol A and other ubiquitous organic environmental chemicals during biomonitoring analysis: an elusive laboratory challenge. Environ Health Perspect 121(3):283–286. doi:10.1289/ehp.1206093

    Article  PubMed  PubMed Central  Google Scholar 

  • Zalko D, Soto AM, Dolo L, Dorio C, Rathahao E, Debrauwer L, Faure R, Cravedi JP (2003) Biotransformations of bisphenol A in a mammalian model: answers and new questions raised by low-dose metabolic fate studies in pregnant CD1 mice. Environ Health Perspect 111(3):309–319

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zalko D, Jacques C, Duplan H, Bruel S, Perdu E (2011) Viable skin efficiently absorbs and metabolizes bisphenol A. Chemosphere 82(3):424–430. doi:10.1016/j.chemosphere.2010.09.058

    Article  PubMed  CAS  Google Scholar 

  • Zhang J (2010) Mammalian cell culture for biopharmaceutical production. In: DA Baltz RH, Davies JE (eds) Manual of industrial microbiology and biotechnology, 3rd edn. ASM Press, Washington DC, pp 157–178

    Google Scholar 

  • Zhang X, Chang H, Wiseman S, He Y, Higley E, Jones P, Wong CK, Al-Khedhairy A, Giesy JP, Hecker M (2011) Bisphenol A disrupts steroidogenesis in human H295R cells. Toxicol Sci 121(2):320–327. doi:10.1093/toxsci/kfr061

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Cooperative Research Training Group Pharmaceutical Biotechnology stated by the Postgraduate Scholarship Act of the Ministry of Science, Research and Arts of the federal state government of Baden-Württemberg and by the German Federal Ministry of Education and Research (Grant No. 0315342A). Further acknowledgements address the International Graduate School in Molecular Medicine of Ulm University, Germany, for scientific encouragement and support.

Compliance with ethical standards

No specific permissions were required for these activities. Informed consent was obtained from all participants, and this article did not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Maria Herold.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stiefel, F., Paul, A.J., Jacopo, T. et al. The influence of bisphenol A on mammalian cell cultivation. Appl Microbiol Biotechnol 100, 113–124 (2016). https://doi.org/10.1007/s00253-015-6956-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6956-8

Keywords

Navigation