Skip to main content
Log in

Hydrogels for 3D mammalian cell culture: a starting guide for laboratory practice

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Hydrogels have become one of the most popular platforms for three-dimensional (3D) cultivation of mammalian cells. The enormous versatility of hydrogel materials makes it possible to design scaffolds with predefined mechanical properties, as well as with desired biofunctionality. 3D hydrogel constructs have been used for a variety of applications, including tissue engineering of microorgan systems, drug delivery, cytotoxicity testing, and drug screening. Moreover, 3D culture is applied for investigating cellular physiology, stem cell differentiation, and tumor models and for studying interaction mechanisms between the extracellular matrix and cells. In this paper, we review current examples of performance-based hydrogel design for 3D cell culture applications. A major emphasis is placed on a description of how standard analytical protocols and imaging techniques are being adapted to analysis of 3D cell culture in hydrogel systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agarwal P, Zhao S, Bielecki P, Rao W, Choi JK, Zhao Y, Yu J, Zhang W, He X (2013) One-step microfluidic generation of pre-hatching embryo-like core-shell microcapsules for miniaturized 3D culture of pluripotent stem cells. Lab Chip 13(23):4525–4533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Abboodi A, Fu J, Doran PM, Tan TTY, Chan PPY (2014) Injectable 3D hydrogel scaffold with tailorable porosity post-implantation. Adv Healthc Mat 3(5):725–736

    Article  CAS  Google Scholar 

  • Alessandri K, Sarangi BR, Gurchenkov VV, Sinha B, Kiessling TR, Fetler L, Rico F, Scheuring S, Lamaze C, Simon A, Geraldo S, Vignjevic D, Domejean H, Rolland L, Funfak A, Bibette J, Bremond N, Nassoy P (2013) Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro. Proc Natl Acad Sci U S A 110(37):14843–14848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allazetta S, Hausherr TC, Lutolf MP (2013) Microfluidic synthesis of cell-type-specific artificial extracellular matrix hydrogels. Biomacromolecules 14(4):1122–1131

    Article  CAS  PubMed  Google Scholar 

  • Almany L, Seliktar D (2005) Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials 26(15):2467–2477

    Article  CAS  PubMed  Google Scholar 

  • Anderson SB, Lin CC, Kuntzler DV, Anseth KS (2011) The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer-peptide hydrogels. Biomaterials 32(14):3564–3574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Annabi N, Nichol JW, Zhong X, Ji C, Koshy S, Khademhosseini A, Dehghani F (2010) Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B Rev 16(4):371–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antoine EE, Vlachos PP, Rylander MN (2014) Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport. Tissue Eng Part B Rev

  • Appelman TP, Mizrahi J, Elisseeff JH, Seliktar D (2009) The differential effect of scaffold composition and architecture on chondrocyte response to mechanical stimulation. Biomaterials 30(4):518–525

    Article  CAS  PubMed  Google Scholar 

  • Ast C, Schmalzlin E, Lohmannsroben HG, van Dongen JT (2012) Optical oxygen micro- and nanosensors for plant applications. Sensors (Basel) 12(6):7015–7032

    Article  CAS  Google Scholar 

  • Astashkina A, Grainger DW (2014) Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments. Adv Drug Deliv Rev 69–70:1–18

    Article  PubMed  CAS  Google Scholar 

  • Auger FA, Gibot L, Lacroix D (2013) The pivotal role of vascularization in tissue engineering. Annu Rev Biomed Eng 15:177–200

    Article  CAS  PubMed  Google Scholar 

  • Bancroft GN, Sikavitsas VI, Mikos AG (2003) Design of a flow perfusion bioreactor system for bone tissue-engineering applications. Tissue Eng 9(3):549–554

    Article  CAS  PubMed  Google Scholar 

  • Baraniak PR, McDevitt TC (2012) Scaffold-free culture of mesenchymal stem cell spheroids in suspension preserves multilineage potential. Cell Tissue Res 347(3):701–711

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya M, Malinen MM, Lauren P, Lou YR, Kuisma SW, Kanninen L, Lille M, Corlu A, GuGuen-Guillouzo C, Ikkala O, Laukkanen A, Urtti A, Yliperttula M (2012) Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J Control Release 164(3):291–298

    Article  CAS  PubMed  Google Scholar 

  • Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P (2012) A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33(26):6020–6041

    Article  CAS  PubMed  Google Scholar 

  • Bracher M, Bezuidenhout D, Lutolf MP, Franz T, Sun M, Zilla P, Davies NH (2013) Cell specific ingrowth hydrogels. Biomaterials 34(28):6797–6803

    Article  CAS  PubMed  Google Scholar 

  • Breslin S, O’Driscoll L (2013) Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today 18(5–6):240–249

    Article  CAS  PubMed  Google Scholar 

  • Cabanas-Danés J, Huskens J, Jonkheijm P (2014) Chemical strategies for the presentation and delivery of growth factors. J Mater Chem B 2(17):2381–2394

    Article  Google Scholar 

  • Cella Zanacchi F, Lavagnino Z, Perrone Donnorso M, Del Bue A, Furia L, Faretta M, Diaspro A (2011) Live-cell 3D super-resolution imaging in thick biological samples. Nat Methods 8(12):1047–1049

    Article  PubMed  CAS  Google Scholar 

  • Cellesi F, Weber W, Fussenegger M, Hubbell JA, Tirelli N (2004) Towards a fully synthetic substitute of alginate: optimization of a thermal gelation/chemical cross-linking scheme (“tandem” gelation) for the production of beads and liquid-core capsules. Biotechnol Bioeng 88(6):740–749

    Article  CAS  PubMed  Google Scholar 

  • Chan HF, Zhang Y, Ho YP, Chiu YL, Jung Y, Leong KW (2013) Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment. Sci Rep 3:3462

    PubMed  PubMed Central  Google Scholar 

  • Chang TT, Hughes-Fulford M (2009) Monolayer and spheroid culture of human liver hepatocellular carcinoma cell line cells demonstrate distinct global gene expression patterns and functional phenotypes. Tissue Eng Part A 15(3):559–567

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Kim JH, Zhang D, Lee KH, Cangelosi GA, Soelberg SD, Furlong CE, Chung JH, Shen AQ (2013) Microfluidic one-step synthesis of alginate microspheres immobilized with antibodies. J R Soc Interface 10(88):20130566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen PY, Yang KC, Wu CC, Yu JH, Lin FH, Sun JS (2014) Fabrication of large perfusable macroporous cell-laden hydrogel scaffolds using microbial transglutaminase. Acta Biomater 10(2):912–920

    Article  CAS  PubMed  Google Scholar 

  • Cheng TY, Chen MH, Chang WH, Huang MY, Wang TW (2013) Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering. Biomaterials 34(8):2005–2016

    Article  CAS  PubMed  Google Scholar 

  • Choi CH, Jung JH, Rhee YW, Kim DP, Shim SE, Lee CS (2007) Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomed Microdevices 9(6):855–862

    Article  CAS  PubMed  Google Scholar 

  • Choi M, Choi JW, Kim S, Nizamoglu S, Hahn SK, Yun SH (2013) Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo. Nat Photonics 7(12):987–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung BG, Lee KH, Khademhosseini A, Lee SH (2012) Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab Chip Miniaturisation Chem Biol 12(1):45–59

    Article  CAS  Google Scholar 

  • Crouch SP, Kozlowski R, Slater KJ, Fletcher J (1993) The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J Immunol Methods 160(1):81–88

    Article  CAS  PubMed  Google Scholar 

  • Culver JC, Hoffmann JC, Poché RA, Slater JH, West JL, Dickinson ME (2012) Three-dimensional biomimetic patterning in hydrogels to guide cellular organization. Adv Mater 24(17):2344–2348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniele MA, Adams AA, Naciri J, North SH, Ligler FS (2014) Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds. Biomaterials 35(6):1845–1856

    Article  CAS  PubMed  Google Scholar 

  • Darnell MC, Sun JY, Mehta M, Johnson C, Arany PR, Suo Z, Mooney DJ (2013) Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels. Biomaterials 34(33):8042–8048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeForest CA, Anseth KS (2012) Advances in bioactive hydrogels to probe and direct cell fate. Annu Rev Chem Biomol Eng 3:421–444

    Article  CAS  PubMed  Google Scholar 

  • Despang FS, K.; Milan, F.; Meikle, S.; Phillips, G.; Dessi, M.; Santin, M.; Gelionsky, M. (2014) Alginate-based bi-layered hydrogels with embedded cells for the regenerative therapy of osteo-chondral defects. PreSens Appl Note

  • Dhariwala B, Hunt E, Boland T (2004) Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng 10(9–10):1316–1322

    Article  CAS  PubMed  Google Scholar 

  • Diederichs S, Bohm S, Peterbauer A, Kasper C, Scheper T, van Griensven M (2010) Application of different strain regimes in two-dimensional and three-dimensional adipose tissue-derived stem cell cultures induces osteogenesis: implications for bone tissue engineering. J Biomed Mater Res A 94(3):927–936

    PubMed  Google Scholar 

  • Dikovsky D, Bianco-Peled H, Seliktar D (2006) The effect of structural alterations of PEG-fibrinogen hydrogel scaffolds on 3-D cellular morphology and cellular migration. Biomaterials 27(8):1496–1506

    Article  CAS  PubMed  Google Scholar 

  • Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351

    Article  CAS  PubMed  Google Scholar 

  • Engelbrecht CJ, Greger K, Reynaud EG, Krzic U, Colombelli J, Stelzer EH (2007) Three-dimensional laser microsurgery in light-sheet based microscopy (SPIM). Opt Express 15(10):6420–6430

    Article  PubMed  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Article  CAS  PubMed  Google Scholar 

  • Even-Ram S, Artym V, Yamada KM (2006) Matrix control of stem cell fate. Cell 126(4):645–647

    Article  CAS  PubMed  Google Scholar 

  • Figallo E, Cannizzaro C, Gerecht S, Burdick JA, Langer R, Elvassore N, Vunjak-Novakovic G (2007) Micro-bioreactor array for controlling cellular microenvironments. Lab Chip 7(6):710–719

    Article  CAS  PubMed  Google Scholar 

  • Forte G, Pagliari S, Ebara M, Uto K, Tam JK, Romanazzo S, Escobedo-Lucea C, Romano E, Di Nardo P, Traversa E, Aoyagi T (2012) Substrate stiffness modulates gene expression and phenotype in neonatal cardiomyocytes in vitro. Tissue Eng Part A 18(17–18):1837–1848

    Article  CAS  PubMed  Google Scholar 

  • Friedrich J, Ebner R, Kunz-Schughart LA (2007) Experimental anti-tumor therapy in 3-D: spheroids—old hat or new challenge? Int J Radiat Biol 83(11–12):849–871

    Article  CAS  PubMed  Google Scholar 

  • Girard YK, Wang C, Ravi S, Howell MC, Mallela J, Alibrahim M, Green R, Hellermann G, Mohapatra SS, Mohapatra S (2013) A 3D fibrous scaffold inducing tumoroids: a platform for anticancer drug development. PLoS One 8(10):e75345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gittard SD, Koroleva A, Nguyen AK, Fadeeva E, Gaidukeviciute A, Schlie-Wolter S, Narayan RJ, Chichkov B (2013) Two-photon polymerization microstructuring in regenerative medicine. Front Biosci (Elite Ed) 5:602–609

    Article  Google Scholar 

  • Gonen-Wadmany M, Goldshmid R, Seliktar D (2011) Biological and mechanical implications of PEGylating proteins into hydrogel biomaterials. Biomaterials 32(26):6025–6033

    Article  CAS  PubMed  Google Scholar 

  • Gramlich WM, Kim IL, Burdick JA (2013) Synthesis and orthogonal photopatterning of hyaluronic acid hydrogels with thiol-norbornene chemistry. Biomaterials 34(38):9803–9811

    Article  CAS  PubMed  Google Scholar 

  • Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS (2009) Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5(1):17–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammer J, Han LH, Tong X, Yang F (2014) A facile method to fabricate hydrogels with microchannel-like porosity for tissue engineering. Tissue Eng Part C Methods 20(2):169–176

    Article  CAS  PubMed  Google Scholar 

  • Haraguchi K (2012) Development of soft nanocomposite materials and their applications in cell culture and tissue engineering. J Stem Cells Regen Med 8(1):P2–P11

    Google Scholar 

  • Haycock JW (2011) 3D cell culture: a review of current approaches and techniques. Methods Mol Biol 695:1–15

    Article  CAS  PubMed  Google Scholar 

  • Heck T, Faccio G, Richter M, Thöny-Meyer L (2013) Enzyme-catalyzed protein cross-linking. Appl Microbiol Biotechnol 97(2):461–475

    Article  CAS  PubMed  Google Scholar 

  • Hern DL, Hubbell JA (1998) Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J Biomed Mater Res 39(2):266–276

    Article  CAS  PubMed  Google Scholar 

  • Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49(8):1993–2007

    Article  CAS  Google Scholar 

  • Hronik-Tupaj M, Rice WL, Cronin-Golomb M, Kaplan DL, Georgakoudi I (2011) Osteoblastic differentiation and stress response of human mesenchymal stem cells exposed to alternating current electric fields. Biomed Eng Online 10:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang GY, Zhou LH, Zhang QC, Chen YM, Sun W, Xu F, Lu TJ (2011) Microfluidic hydrogels for tissue engineering. Biofabrication 3(1)

  • Huang G, Zhang X, Xiao Z, Zhang Q, Zhou J, Xu F, Lu TJ (2012) Cell-encapsulating microfluidic hydrogels with enhanced mechanical stability. Soft Matter 8(41):10687–10694

    Article  CAS  Google Scholar 

  • Hulsart-Billström G, Yuen PK, Marsell R, Hilborn J, Larsson S, Ossipov D (2013) Bisphosphonate-linked hyaluronic acid hydrogel sequesters and enzymatically releases active bone morphogenetic protein-2 for induction of osteogenic differentiation. Biomacromolecules 14(9):3055–3063

    Article  PubMed  CAS  Google Scholar 

  • Hwang NS, Varghese S, Elisseeff J (2008) Controlled differentiation of stem cells. Adv Drug Deliv Rev 60(2):199–214

    Article  CAS  PubMed  Google Scholar 

  • Impellitteri NA, Toepke MW, Lan Levengood SK, Murphy WL (2012) Specific VEGF sequestering and release using peptide-functionalized hydrogel microspheres. Biomaterials 33(12):3475–3484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon O, Alt DS, Linderman SW, Alsberg E (2013) Biochemical and physical signal gradients in hydrogels to control stem cell behavior. Adv Mater 25(44):6366–6372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jose S, Hughbanks ML, Binder BYK, Ingavle GC, Leach JK (2014) Enhanced trophic factor secretion by mesenchymal stem/stromal cells with glycine-histidine-lysine (GHK)-modified alginate hydrogels. Acta Biomater 10(5):1955–1964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahle J (2010) An inexpensive simple-to-use inverted fluorescence microscope: a new tool for cellular analysis. J Lab Autom 15(5):355–361

    Article  CAS  Google Scholar 

  • Kahle J (2011) Applications of a compact, easy-to-use inverted fluorescence microscope. Life Sci Inst 6:009

    Google Scholar 

  • Kang A, Park J, Ju J, Jeong GS, Lee SH (2014) Cell encapsulation via microtechnologies. Biomaterials 35(9):2651–2663

    Article  CAS  PubMed  Google Scholar 

  • Karlsson H, Fryknas M, Larsson R, Nygren P (2012) Loss of cancer drug activity in colon cancer HCT-116 cells during spheroid formation in a new 3-D spheroid cell culture system. Exp Cell Res 318(13):1577–1585

    Article  CAS  PubMed  Google Scholar 

  • Kesselman D, Kossover O, Mironi-Harpaz I, Seliktar D (2013) Time-dependent cellular morphogenesis and matrix stiffening in proteolytically responsive hydrogels. Acta Biomater 9(8):7630–7639

    Article  CAS  PubMed  Google Scholar 

  • Khetan S, Burdick JA (2010) Patterning network structure to spatially control cellular remodeling and stem cell fate within 3-dimensional hydrogels. Biomaterials 31(32):8228–8234

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Lasher CD, Milford LM, Murali TM, Rajagopalan P (2010) A comparative study of genome-wide transcriptional profiles of primary hepatocytes in collagen sandwich and monolayer cultures. Tissue Eng Part C Methods 16(6):1449–1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim C, Chung S, Kim YE, Lee KS, Lee SH, Oh KW, Kang JY (2011) Generation of core-shell microcapsules with three-dimensional focusing device for efficient formation of cell spheroid. Lab Chip 11(2):246–252

    Article  CAS  PubMed  Google Scholar 

  • Kim SB, Koo KI, Bae H, Dokmeci MR, Hamilton GA, Bahinski A, Kim SM, Ingber DE, Khademhosseini A (2012) A mini-microscope for in situ monitoring of cells. Lab Chip 12(20):3976–3982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klouda L, Mikos AG (2008) Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 68(1):34–45

    Article  CAS  PubMed  Google Scholar 

  • Kloxin AM, Tibbitt MW, Anseth KS (2010) Synthesis of photodegradable hydrogels as dynamically tunable cell culture platforms. Nat Protoc 5(12):1867–1887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koroleva A, Gittard S, Schlie S, Deiwick A, Jockenhoevel S, Chichkov B (2012) Fabrication of fibrin scaffolds with controlled microscale architecture by a two-photon polymerization-micromolding technique. Biofabrication 4(1):015001

    Article  PubMed  CAS  Google Scholar 

  • Lam J, Segura T (2013) The modulation of MSC integrin expression by RGD presentation. Biomaterials 34(16):3938–3947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landers R, Hubner U, Schmelzeisen R, Mulhaupt R (2002) Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23(23):4437–4447

    Article  CAS  PubMed  Google Scholar 

  • Lang R, Stern MM, Smith L, Liu Y, Bharadwaj S, Liu G, Baptista PM, Bergman CR, Soker S, Yoo JJ, Atala A, Zhang Y (2011) Three-dimensional culture of hepatocytes on porcine liver tissue-derived extracellular matrix. Biomaterials 32(29):7042–7052

    Article  CAS  PubMed  Google Scholar 

  • Lavrentieva A, Hatlapatka T, Neumann A, Weyand B, Kasper C (2013) Potential for osteogenic and chondrogenic differentiation of MSC. Adv Biochem Eng Biotechnol 129:73–88

    CAS  PubMed  Google Scholar 

  • Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci (Oxford) 37(1):106–126

    Article  CAS  Google Scholar 

  • Lee HJ, Yu C, Chansakul T, Hwang NS, Varghese S, Yu SM, Elisseeff JH (2008) Enhanced chondrogenesis of mesenchymal stem cells in collagen mimetic peptide-mediated microenvironment. Tissue Eng Part A 14(11):1843–1851

    Article  CAS  PubMed  Google Scholar 

  • Lee W, Debasitis JC, Lee VK, Lee JH, Fischer K, Edminster K, Park JK, Yoo SS (2009) Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30(8):1587–1595

    Article  CAS  PubMed  Google Scholar 

  • Lee JM, Mhawech-Fauceglia P, Lee N, Parsanian LC, Lin YG, Gayther SA, Lawrenson K (2013) A three-dimensional microenvironment alters protein expression and chemosensitivity of epithelial ovarian cancer cells in vitro. Lab Invest 93(5):528–542

    Article  PubMed  CAS  Google Scholar 

  • Lee YB, Jun I, Bak S, Shin YM, Lim YM, Park H, Shin H (2014) Reconstruction of Vascular structure with multicellular components using cell transfer printing methods. Adv Healthc Mater

  • Leicht UV, E.; Wiese, H; Schieker, M. (2014) Hydrogels as cell carriers for tissue engineering. PreSens Application Note

  • Li RH, Altreuter DH, Gentile FT (1996) Transport characterization of hydrogel matrices for cell encapsulation. Biotechnol Bioeng 50(4):365–373

    Article  CAS  PubMed  Google Scholar 

  • Lian M, Collier CP, Doktycz MJ, Retterer ST (2012) Monodisperse alginate microgel formation in a three-dimensional microfluidic droplet generator. Biomicrofluidics 6(4):44108

    Article  PubMed  CAS  Google Scholar 

  • Liao SW, Yu TB, Guan Z (2009) De novo design of saccharide-peptide hydrogels as synthetic scaffolds for tailored cell responses. J Am Chem Soc 131(48):17638–17646

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Yuan W, Wang J (2010) Mechanisms for osteogenic differentiation of human mesenchymal stem cells induced by fluid shear stress. Biomech Model Mechanobiol 9(6):659–670

    Article  PubMed  Google Scholar 

  • Loessner D, Stok KS, Lutolf MP, Hutmacher DW, Clements JA, Rizzi SC (2010) Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials 31(32):8494–8506

    Article  CAS  PubMed  Google Scholar 

  • Lou YR, Kanninen L, Kuisma T, Niklander J, Noon LA, Burks D, Urtti A, Yliperttula M (2014) The use of nanofibrillar cellulose hydrogel as a flexible three-dimensional model to culture human pluripotent stem cells. Stem Cells Dev 23(4):380–392

    Article  CAS  PubMed  Google Scholar 

  • Luca AC, Mersch S, Deenen R, Schmidt S, Messner I, Schafer KL, Baldus SE, Huckenbeck W, Piekorz RP, Knoefel WT, Krieg A, Stoecklein NH (2013) Impact of the 3D microenvironment on phenotype, gene expression, and EGFR inhibition of colorectal cancer cell lines. PLoS One 8(3):e59689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lücking TH, Sambale F, Beutel S, Scheper T (2014a) 3D-printed individual labware in biosciences by rapid prototyping: a proof of principle. Engineering in Life Sciences:n/a-n/a

  • Lücking TH, Sambale F, Schnaars B, Bulnes-Abundis D, Beutel S, Scheper T (2014b) 3D-printed individual labware in biosciences by rapid prototyping: in vitro biocompatibility and applications for eukaryotic cell cultures. Engineering in Life Sciences:n/a-n/a

  • Luo Y, Shoichet MS (2004) A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat Mater 3(4):249–253

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Akkineni AR, Gelinsky M (2014) Three-dimensional plotting is a versatile rapid prototyping method for the customized manufacturing of complex scaffolds and tissue engineering constructs. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 28(3):279–285

    PubMed  Google Scholar 

  • Ma M, Chiu A, Sahay G, Doloff JC, Dholakia N, Thakrar R, Cohen J, Vegas A, Chen D, Bratlie KM, Dang T, York RL, Hollister-Lock J, Weir GC, Anderson DG (2013) Core-shell hydrogel microcapsules for improved islets encapsulation. Adv Healthc Mat 2(5):667–672

    Article  CAS  Google Scholar 

  • Mahoney MJ, Anseth KS (2006) Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels. Biomaterials 27(10):2265–2274

    Article  CAS  PubMed  Google Scholar 

  • Manojlovic V, Djonlagic J, Obradovic B, Nedovic V, Bugarski B (2006) Immobilization of cells by electrostatic droplet generation: a model system for potential application in medicine. Int J Nanomedicine 1(2):163–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Banderas L, Flores-Mosquera M, Riesco-Chueca P, Rodriguez-Gil A, Cebolla A, Chavez S, Ganan-Calvo AM (2005) Flow focusing: a versatile technology to produce size-controlled and specific-morphology microparticles. Small 1(7):688–692

    Article  CAS  PubMed  Google Scholar 

  • Mazzitelli S, Tosi A, Balestra C, Nastruzzi C, Luca G, Mancuso F, Calafiore R, Calvitti M (2008) Production and characterization of alginate microcapsules produced by a vibrational encapsulation device. J Biomater Appl 23(2):123–145

    Article  CAS  PubMed  Google Scholar 

  • McKinnon DD, Kloxin AM, Anseth KS (2013) Synthetic hydrogel platform for three-dimensional culture of embryonic stem cell-derived motor neurons. Biomater Sci 1(5):460–469

    Article  CAS  Google Scholar 

  • Mequanint APaK ((2011)) Hydrogel biomaterials. In: (Ed.) PRF (ed) Biomedical Engineering - Frontiers and Challenges.

  • Mironi-Harpaz I, Wang DY, Venkatraman S, Seliktar D (2012) Photopolymerization of cell-encapsulating hydrogels: cross-linking efficiency versus cytotoxicity. Acta Biomater 8(5):1838–1848

    Article  CAS  PubMed  Google Scholar 

  • Moeinzadeh S, Barati D, He X, Jabbari E (2012) Gelation characteristics and osteogenic differentiation of stromal cells in inert hydrolytically degradable micellar polyethylene glycol hydrogels. Biomacromolecules 13(7):2073–2086

    Article  CAS  PubMed  Google Scholar 

  • Mosiewicz KA, Kolb L, Van Der Vlies AJ, Martino MM, Lienemann PS, Hubbell JA, Ehrbar M, Lutolf MP (2013) In situ cell manipulation through enzymatic hydrogel photopatterning. Nat Mater 12(11):1072–1078

    Article  CAS  PubMed  Google Scholar 

  • Nemir S, Hayenga HN, West JL (2010) PEGDA hydrogels with patterned elasticity: novel tools for the study of cell response to substrate rigidity. Biotechnol Bioeng 105(3):636–644

    Article  CAS  PubMed  Google Scholar 

  • Nguyen AK, Gittard SD, Koroleva A, Schlie S, Gaidukeviciute A, Chichkov BN, Narayan RJ (2013) Two-photon polymerization of polyethylene glycol diacrylate scaffolds with riboflavin and triethanolamine used as a water-soluble photoinitiator. Regen Med 8(6):725–738

    Article  CAS  PubMed  Google Scholar 

  • Nuttelman CR, Tripodi MC, Anseth KS (2004) In vitro osteogenic differentiation of human mesenchymal stem cells photoencapsulated in PEG hydrogels. J Biomed Mater Res A 68(4):773–782

    Article  PubMed  CAS  Google Scholar 

  • O’Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267(17):5421–5426

    Article  PubMed  Google Scholar 

  • Occhetta P, Sadr N, Piraino F, Redaelli A, Moretti M, Rasponi M (2013) Fabrication of 3D cell-laden hydrogel microstructures through photo-mold patterning. Biofabrication 5(3)

  • Pampaloni F, Reynaud EG, Stelzer EH (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8(10):839–845

    Article  CAS  PubMed  Google Scholar 

  • Park SA, Lee SH, Kim W (2011) Fabrication of hydrogel scaffolds using rapid prototyping for soft tissue engineering. Macromol Res 19(7):694–698

    Article  CAS  Google Scholar 

  • Patterson J, Hubbell JA (2011) SPARC-derived protease substrates to enhance the plasmin sensitivity of molecularly engineered PEG hydrogels. Biomaterials 32(5):1301–1310

    Article  CAS  PubMed  Google Scholar 

  • Peng K, Tomatsu I, Van Den Broek B, Cui C, Korobko AV, Van Noort J, Meijer AH, Spaink HP, Kros A (2011) Dextran based photodegradable hydrogels formed via a Michael addition. Soft Matter 7(10):4881–4887

    Article  CAS  Google Scholar 

  • Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18(11):1345–1360

    Article  CAS  Google Scholar 

  • Plotkin M, Vaibavi SR, Rufaihah AJ, Nithya V, Wang J, Shachaf Y, Kofidis T, Seliktar D (2014) The effect of matrix stiffness of injectable hydrogels on the preservation of cardiac function after a heart attack. Biomaterials 35(5):1429–1438

    Article  CAS  PubMed  Google Scholar 

  • Potier E, Ferreira E, Andriamanalijaona R, Pujol JP, Oudina K, Logeart-Avramoglou D, Petite H (2007) Hypoxia affects mesenchymal stromal cell osteogenic differentiation and angiogenic factor expression. Bone 40(4):1078–1087

    Article  CAS  PubMed  Google Scholar 

  • Prüsse U, Bilancetti L, Bucko M, Bugarski B, Bukowski J, Gemeiner P, Lewinska D, Manojlovic V, Massart B, Nastruzzi C, Nedovic V, Poncelet D, Siebenhaar S, Tobler L, Tosi A, Vikartovska A, Vorlop K (2008) Comparison of different technologies for alginate beads production. Chem Pap 62(4):364–374

    Article  CAS  Google Scholar 

  • Rahimi N, Swennen G, Verbruggen S, Scibiorek M, Molin DG, Post MJ (2014) Short stimulation of electro-responsive PAA/fibrin hydrogel induces collagen production. Tissue Eng Part C Methods

  • Rice MA, Sanchez-Adams J, Anseth KS (2006) Exogenously triggered, enzymatic degradation of photopolymerized hydrogels with polycaprolactone subunits: experimental observation and modeling of mass loss behavior. Biomacromolecules 7(6):1968–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rimann M, Graf-Hausner U (2012) Synthetic 3D multicellular systems for drug development. Curr Opin Biotechnol 23(5):803–809

    Article  CAS  PubMed  Google Scholar 

  • Rustad KC, Wong VW, Sorkin M, Glotzbach JP, Major MR, Rajadas J, Longaker MT, Gurtner GC (2012) Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials 33(1):80–90

    Article  CAS  PubMed  Google Scholar 

  • Ryan DM, Nilsson BL (2012) Self-assembled amino acids and dipeptides as noncovalent hydrogels for tissue engineering. Polym Chem 3(1):18–33

    Article  CAS  Google Scholar 

  • Saik JE, Gould DJ, Watkins EM, Dickinson ME, West JL (2011) Covalently immobilized platelet-derived growth factor-BB promotes angiogenesis in biomimetic poly(ethylene glycol) hydrogels. Acta Biomater 7(1):133–143

    Article  CAS  PubMed  Google Scholar 

  • Sancho A, Vazquez L, De-Juan-Pardo EM (2014) Effect of cold storage on collagen-based hydrogels for the three-dimensional culture of adipose-derived stem cells. Biofabrication 6(3):035017

    Article  PubMed  CAS  Google Scholar 

  • Schmidt O, Mizrahi J, Elisseeff J, Seliktar D (2006) Immobilized fibrinogen in PEG hydrogels does not improve chondrocyte-mediated matrix deposition in response to mechanical stimulation. Biotechnol Bioeng 95(6):1061–1069

    Article  CAS  PubMed  Google Scholar 

  • Schwinger C, Koch S, Jahnz U, Wittlich P, Rainov NG, Kressler J (2002) High throughput encapsulation of murine fibroblasts in alginate using the JetCutter technology. J Microencapsul 19(3):273–280

    Article  CAS  PubMed  Google Scholar 

  • Seif-Naraghi SB, Horn D, Schup-Magoffin PJ, Christman KL (2012) Injectable extracellular matrix derived hydrogel provides a platform for enhanced retention and delivery of a heparin-binding growth factor. Acta Biomater 8(10):3695–3703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seiler C, Gazdhar A, Reyes M, Benneker LM, Geiser T, Siebenrock KA, Gantenbein-Ritter B (2012) Time-lapse microscopy and classification of 2D human mesenchymal stem cells based on cell shape picks up myogenic from osteogenic and adipogenic differentiation. J Tissue Eng Regen Med

  • Seliktar D (2012) Designing cell-compatible hydrogels for biomedical applications. Science 336(6085):1124–1128

    Article  CAS  PubMed  Google Scholar 

  • Shachaf Y, Gonen-Wadmany M, Seliktar D (2010) The biocompatibility of PluronicF127 fibrinogen-based hydrogels. Biomaterials 31(10):2836–2847

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Barakzai SZ, Taylor SE, Donadeu FX (2013) Epidermal-like architecture obtained from equine keratinocytes in three-dimensional cultures. J Tissue Eng Regen Med

  • Singh RK, Seliktar D, Putnam AJ (2013) Capillary morphogenesis in PEG-collagen hydrogels. Biomaterials 34(37):9331–9340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stratmann AT, Fecher D, Wangorsch G, Gottlich C, Walles T, Walles H, Dandekar T, Dandekar G, Nietzer SL (2014) Establishment of a human 3D lung cancer model based on a biological tissue matrix combined with a boolean in silico model. Mol Oncol 8(2):351–365

    Article  CAS  PubMed  Google Scholar 

  • Sun G, Shen YI, Kusuma S, Fox-Talbot K, Steenbergen CJ, Gerecht S (2011) Functional neovascularization of biodegradable dextran hydrogels with multiple angiogenic growth factors. Biomaterials 32(1):95–106

    Article  PubMed  CAS  Google Scholar 

  • Sutherla RM, Mccredie JA, Inch WR (1971) Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. J Natl Cancer Inst 46(1):113

    Google Scholar 

  • Tam RY, Cooke MJ, Shoichet MS (2012) A covalently modified hydrogel blend of hyaluronan-methyl cellulose with peptides and growth factors influences neural stem/progenitor cell fate. J Mater Chem 22(37):19402–19411

    Article  CAS  Google Scholar 

  • Taqvi S, Roy K (2006) Influence of scaffold physical properties and stromal cell coculture on hematopoietic differentiation of mouse embryonic stem cells. Biomaterials 27(36):6024–6031

    Article  CAS  PubMed  Google Scholar 

  • Terraciano V, Hwang N, Moroni L, Park HB, Zhang Z, Mizrahi J, Seliktar D, Elisseeff J (2007) Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels. Stem Cells 25(11):2730–2738

    Article  CAS  PubMed  Google Scholar 

  • Thiele J, Ma Y, Bruekers SM, Ma S, Huck WT (2014a) 25th anniversary article: designer hydrogels for cell cultures: a materials selection guide. Adv Mater 26(1):125–147

    Article  CAS  PubMed  Google Scholar 

  • Thiele J, Ma Y, Foschepoth D, Hansen MM, Steffen C, Heus HA, Huck WT (2014b) DNA-functionalized hydrogels for confined membrane-free in vitro transcription/translation. Lab Chip 14(15):2651–2656

    Article  CAS  PubMed  Google Scholar 

  • Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103(4):655–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tibbitt MW, Kloxin AM, Sawicki LA, Anseth KS (2013) Mechanical properties and degradation of chain and step-polymerized photodegradable hydrogels. Macromolecules 46(7):2785–2792

    Article  CAS  PubMed Central  Google Scholar 

  • Tong X, Yang F (2014) Engineering interpenetrating network hydrogels as biomimetic cell niche with independently tunable biochemical and mechanical properties. Biomaterials 35(6):1807–1815

    Article  CAS  PubMed  Google Scholar 

  • Tung YC, Hsiao AY, Allen SG, Torisawa YS, Ho M, Takayama S (2011) High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136(3):473–478

    Article  CAS  PubMed  Google Scholar 

  • Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12(5):1387–1408

    Article  PubMed  CAS  Google Scholar 

  • Varghese D, Deshpande M, Xu T, Kesari P, Ohri S, Boland T (2005) Advances in tissue engineering: cell printing. J Thorac Cardiovasc Surg 129(2):470–472

    Article  PubMed  Google Scholar 

  • Verhulsel M, Vignes M, Descroix S, Malaquin L, Vignjevic DM, Viovy JL (2014) A review of microfabrication and hydrogel engineering for micro-organs on chips. Biomaterials 35(6):1816–1832

    Article  CAS  PubMed  Google Scholar 

  • Walters BD, Stegemann JP (2014) Strategies for directing the structure and function of three-dimensional collagen biomaterials across length scales. Acta Biomater 10(4):1488–1501

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Hao J, Zhang F, Su K, Wang DA (2008) RNA extraction from polysaccharide-based cell-laden hydrogel scaffolds. Anal Biochem 380(2):333–334

    Article  CAS  PubMed  Google Scholar 

  • Wei J, Han J, Zhao Y, Cui Y, Wang B, Xiao Z, Chen B, Dai J (2014) The importance of three-dimensional scaffold structure on stemness maintenance of mouse embryonic stem cells. Biomaterials 35(27):7724–7733

    Article  CAS  PubMed  Google Scholar 

  • Werner M, Biss K, Jerome V, Hilbrig F, Freitag R, Zambrano K, Hubner H, Buchholz R, Mahou R, Wandrey C (2013) Use of the mitochondria toxicity assay for quantifying the viable cell density of microencapsulated jurkat cells. Biotechnol Prog 29(4):986–993

    Article  CAS  PubMed  Google Scholar 

  • West JL, Hubbell JA (1999) Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 32(1):241–244

    Article  CAS  Google Scholar 

  • Yamada M, Tanemura K, Okada S, Iwanami A, Nakamura M, Mizuno H, Ozawa M, Ohyama-Goto R, Kitamura N, Kawano M, Tan-Takeuchi K, Ohtsuka C, Miyawaki A, Takashima A, Ogawa M, Toyama Y, Okano H, Kondo T (2007) Electrical stimulation modulates fate determination of differentiating embryonic stem cells. Stem Cells 25(3):562–570

    Article  CAS  PubMed  Google Scholar 

  • Yang SF, Leong KF, Du ZH, Chua CK (2002) The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng 8(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Yeh HY, Liu BH, Sieber M, Hsu SH (2014) Substrate-dependent gene regulation of self-assembled human MSC spheroids on chitosan membranes. BMC Genomics 15(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeong WY, Chua CK, Leong KF, Chandrasekaran M (2004) Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 22(12):643–652

    Article  CAS  PubMed  Google Scholar 

  • Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Janmey PA (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 60(1):24–34

    Article  PubMed  Google Scholar 

  • Young JL, Engler AJ (2011) Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro. Biomaterials 32(4):1002–1009

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Boughton P, Rose B, Lee CS, Hong AM (2013) The use of porous scaffold as a tumor model. Int J Biomater 2013:396056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu J (2010) Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 31(17):4639–4656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zschenker O, Streichert T, Hehlgans S, Cordes N (2012) Genome-wide gene expression analysis in cancer cells reveals 3D growth to affect ECM and processes associated with cell adhesion but not DNA repair. PLoS One 7(4):e34279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuidema JM, Pap MM, Jaroch DB, Morrison FA, Gilbert RJ (2011) Fabrication and characterization of tunable polysaccharide hydrogel blends for neural repair. Acta Biomater 7(4):1634–1643

    Article  CAS  PubMed  Google Scholar 

  • Zuidema JM, Rivet CJ, Gilbert RJ, Morrison FA (2014) A protocol for rheological characterization of hydrogels for tissue engineering strategies. J Biomed Mater Res B Appl Biomater 102(5):1063–1073

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed in the framework BIOFABRICATION FOR NIFE funded by the state of Lower Saxony, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonina Lavrentieva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruedinger, F., Lavrentieva, A., Blume, C. et al. Hydrogels for 3D mammalian cell culture: a starting guide for laboratory practice. Appl Microbiol Biotechnol 99, 623–636 (2015). https://doi.org/10.1007/s00253-014-6253-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6253-y

Keywords

Navigation