Skip to main content
Log in

Rational design of ornithine decarboxylase with high catalytic activity for the production of putrescine

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Putrescine finds wide industrial applications in the synthesis of polymers, pharmaceuticals, agrochemicals, and surfactants. Owing to economic and environmental concerns, the microbial production of putrescine has attracted a great deal of attention, and ornithine decarboxylase (ODC) is known to be a key enzyme in the biosynthetic pathway. Herein, we present the design of ODC from Escherichia coli with high catalytic efficiency using a structure-based rational approach. Through a substrate docking into the model structure of the enzyme, we first selected residues that might lead to an increase in catalytic activity. Of the selected residues that are located in the α-helix and the loops constituting the substrate entry site, a mutational analysis of the single mutants identified two key residues, I163 and E165. A combination of two single mutations resulted in a 62.5-fold increase in the catalytic efficiency when compared with the wild-type enzyme. Molecular dynamics simulations of the best mutant revealed that the substrate entry site becomes more flexible through mutations, while stabilizing the formation of the dimeric interface of the enzyme. Our approach can be applied to the design of other decarboxylases with high catalytic efficiency for the production of various chemicals through bio-based processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adkins J, Pugh S, McKenna R, Nielsen DR (2012) Engineering microbial chemical factories to produce renewable “biomonomers”. Front Microbiol 3:313

    PubMed Central  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    CAS  PubMed  Google Scholar 

  • Becker J, Wittmann C (2012) Bio-based production of chemicals, materials and fuels—Corynebacterium glutamicum as versatile cell factory. Curr Opin Biotechnol 23(4):631–640

    CAS  PubMed  Google Scholar 

  • Eppelmann K, Nossin P, Raeven L, Kremer S, Wubbolts M (2006) Biochemical synthesis of 1, 4-butanediamine. WO2006005603

  • Eswar N, Webb B, Marti-Renom MA, Madhusudhan M, Eramian D, Shen My, Pieper U, Sali A (2006) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics 5.6. 1–5.6. 30

  • Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A 89(22):10915–10919

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447

    CAS  Google Scholar 

  • Jackson LK, Baldwin J, Akella R, Goldsmith EJ, Phillips MA (2004) Multiple active site conformations revealed by distant site mutation in ornithine decarboxylase. Biochemistry 43(41):12990–12999

    CAS  PubMed  Google Scholar 

  • Kanjee U, Gutsche I, Ramachandran S, Houry WA (2011) The enzymatic activities of the Escherichia coli basic aliphatic amino acid decarboxylases exhibit a pH zone of inhibition. Biochemistry 50(43):9388–9398

    CAS  PubMed  Google Scholar 

  • Kind S, Wittmann C (2011) Bio-based production of the platform chemical 1,5-diaminopentane. Appl Microbiol Biotechnol 91(5):1287–1296

    CAS  PubMed  Google Scholar 

  • Lee JW, Kim HU, Choi S, Yi J, Lee SY (2011) Microbial production of building block chemicals and polymers. Curr Opin Biotechnol 22(6):758–767

    CAS  PubMed  Google Scholar 

  • Li H, Cao Y (2010) Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 39(5):1107–1116

    CAS  PubMed  Google Scholar 

  • Momany C, Ernst S, Ghosh R, Chang NL, Hackert ML (1995) Crystallographic structure of a PLP-dependent ornithine decarboxylase from Lactobacillus 30a to 3.0 A resolution. J Mol Biol 252(5):643–655

    CAS  PubMed  Google Scholar 

  • Myers DP, Jackson LK, Ipe VG, Murphy GE, Phillips MA (2001) Long-range interactions in the dimer interface of ornithine decarboxylase are important for enzyme function. Biochemistry 40(44):13230–13236

    CAS  PubMed  Google Scholar 

  • Nagashima Y, Kako K, Kim J-D, Fukamizu A (2012) Enhanced histamine production through the induction of histidine decarboxylase expression by phorbol ester in Jurkat cells. Mol Med Rep 6(5):944–948

    CAS  PubMed Central  PubMed  Google Scholar 

  • Offman MN, Krol M, Patel N, Krishnan S, Liu J, Saha V, Bates PA (2011) Rational engineering of L-asparaginase reveals importance of dual activity for cancer cell toxicity. Blood 117(5):1614–1621

    CAS  PubMed  Google Scholar 

  • Okoniewska M, Tanaka T, Yada RY (1999) The role of the flap residue, threonine 77, in the activation and catalytic activity of pepsin A. Protein Eng 12(1):55–61

    CAS  PubMed  Google Scholar 

  • Oliveira EF, Cerqueira NM, Fernandes PA, Ramos MJ (2011) Mechanism of formation of the internal aldimine in pyridoxal 5′-phosphate-dependent enzymes. J Am Chem Soc 133(39):15496–15505

    CAS  PubMed  Google Scholar 

  • Qian ZG, Xia XX, Lee SY (2009) Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine. Biotechnol Bioeng 104(4):651–662

    CAS  PubMed  Google Scholar 

  • Romano A, Trip H, Lolkema JS, Lucas PM (2013) Three-component lysine/ornithine decarboxylation system in Lactobacillus saerimneri 30a. J Bacteriol 195(6):1249–1254

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, van Gunsteren WF (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J 40(7):843–856

    CAS  PubMed  Google Scholar 

  • Schneider J, Wendisch VF (2010) Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 88(4):859–868

    CAS  PubMed  Google Scholar 

  • Scott E, Peter F, Sanders J (2007) Biomass in the manufacture of industrial products—the use of proteins and amino acids. Appl Microbiol Biotechnol 75(4):751–762

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vickers CE, Blank LM, Kromer JO (2010) Grand challenge commentary: chassis cells for industrial biochemical production. Nat Chem Biol 6(12):875–877

    CAS  PubMed  Google Scholar 

  • Vienozinskiene J, Januseviciute R, Pauliukonis A, Kazlauskas D (1985) Lysine decarboxylase assay by the pH-stat method. Anal Biochem 146(1):180–183

    CAS  PubMed  Google Scholar 

  • Yamanobe T, Kurihara Y, Uehara H, Komoto T (2007) Structure and characterization of nylon 46. J Mol Struct 829(1):80–87

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hak-Sung Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 286 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, H., Kyeong, HH., Choi, J. et al. Rational design of ornithine decarboxylase with high catalytic activity for the production of putrescine. Appl Microbiol Biotechnol 98, 7483–7490 (2014). https://doi.org/10.1007/s00253-014-5669-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5669-8

Keywords

Navigation