Skip to main content
Log in

The echinocandin B producer fungus Aspergillus nidulans var. roseus ATCC 58397 does not possess innate resistance against its lipopeptide antimycotic

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Aspergillus nidulans var. roseus ATCC 58397 is an echinocandin B (ECB) producer ascomycete with great industrial importance. As demonstrated by ECB/caspofungin sensitivity assays, A. nidulans var. roseus does not possess any inherent resistance to echinocandins, and its tolerance to these lipopeptide antimycotics are even lower than those of the non-producer A. nidulans FGSC A4 strain. Under ECB producing conditions or ECB exposures, A. nidulans var. roseus induced its ECB tolerance via up-regulating elements of the chitin biosynthetic machinery and, hence, through changing dynamically the composition of its own cell wall. Importantly, although the specific β-1,3-glucan synthase activity was elevated, these changes reduced the β-glucan content of hyphae considerably, but the expression of fksA, encoding the catalytic subunit of β-1,3-glucan synthase, the putative target of echinocandins in the aspergilli, was not affected. These data suggest that compensatory chitin biosynthesis is the centerpiece of the induced ECB tolerance of A. nidulans var. roseus. It is important to note that the induced tolerance to ECB (although resulted in paradoxical growth at higher ECB concentrations) was accompanied with reduced growth rate and, under certain conditions, even sensitized the fungus to other stress-generating agents like SDS. We hypothesize that although ECB-resistant mutants may arise in vivo in A. nidulans var. roseus cultures, their widespread propagation is severely restricted by the disadvantageous physiological effects of such mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arendrup MC, Perkhofer S, Howard SJ, Garcia-Effron G, Vishukumar A, Perlin D, Lars-Flörl C (2008) Establishing in vitro–in vivo correlations for Aspergillus fumigatus: the challenge of azoles versus echinocandins. Antimicrob Agents Chemother 52:3504–3511

    Article  CAS  Google Scholar 

  • Arendrup MC, Garcia-Effron G, Buzina W, Mortensen KL, Reiter N, Lundin C, Jensen HE, Lass-Flörl C, Perlin DS, Bruun B (2009) Breakthrough Aspergillus fumigatus and Candida albicans double infection during caspofungin treatment: laboratory characteristics and implication for susceptibility testing. Antimicrob Agents Chemother 53:1185–1193

    Article  CAS  Google Scholar 

  • Arikan S, Lozano-Chiu M, Paetznick V, Rex JH (2001) In vitro susceptibility testing methods for caspofungin against Aspergillus and Fusarium isolates. Antimicrob Agents Chemother 45:327–330

    Article  CAS  Google Scholar 

  • Barratt RW, Johnson GB, Ogata WN (1965) Wildtype and mutant stocks of Aspergillus nidulans. Genetics 52:233–246

    CAS  Google Scholar 

  • Boeck LD, Kastner RE (1981) Method of producing the A-30912 antibiotics. U.S. Patent 4,288,549

  • Borgia PT, Dodge CL (1992) Characterization of Aspergillus nidulans mutants deficient in cell wall chitin or glucan. J Bacteriol 174:377–383

    CAS  Google Scholar 

  • Chomczynski P (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15:532–536

    CAS  Google Scholar 

  • Denning DW (2002) Echinocandins: a new class of antifungal. J Antimicrob Chemother 49:889–891

    Article  CAS  Google Scholar 

  • Diekema DJ, Messer SA, Hollis RJ, Jones RN, Pfaller MA (2003) Activities of caspofungin, itraconazole, posaconazole, ravuconazole, voriconazole, and amphotericin B against 448 recent clinical isolates of filamentous fungi. J Clin Microbiol 41:3623–3626

    Article  CAS  Google Scholar 

  • Fabrizio P, Battistella L, Vardavas R, Gattazzo C, Liou LL, Diaspro A, Dossen JW, Gralla EB, Longo VD (2004) Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J Cell Biol 166:1055–1067

    Article  CAS  Google Scholar 

  • Fekete A, Emri T, Gyetvai Á, Gazdag Z, Pesti M, Varga Z, Balla J, Cserháti C, Emődy L, Gergely L, Pócsi I (2007) Development of oxidative stress tolerance resulted in reduced ability to undergo morphologic transitions and decreased pathogenicity in a t-butylhydroperoxide-tolerant mutant of Candida albicans. FEMS Yeast Res 7:834–847

    Article  CAS  Google Scholar 

  • Fekete A, Pócsi I, Emri T, Gyetvai Á, Gazdag Z, Pesti M, Karányi Z, Majoros L, Gergely L, Pócsi I (2008) Physiological and morphological characterization of tert-butylhydroperoxide tolerant Candida albicans mutants. J Basic Microbiol 48:480–487

    Article  CAS  Google Scholar 

  • Galgóczy L, Papp T, Leiter É, Marx F, Pócsi I, Vágvölgyi C (2005) Sensitivity of different Zygomycetes to the Penicillium chrysogenum antifungal protein (PAF). J Basic Microbiol 45:136–141

    Article  Google Scholar 

  • Garcia-Effron G, Katiyar SK, Park S, Edlind TD, Perlin DS (2008) A naturally-occurring Fks1p proline to alanine amino acid change in Candida parapsilosis, Candida orthopsilosis and Candida metapsilosis accounts for reduced echinocandin susceptibility. Antimicrob Agents Chemother 52:2305–2312

    Article  CAS  Google Scholar 

  • Garcia-Effron G, Lee S, Park S, Cleary JD, Perlin DS (2009) Effect of Candida glabrata FKS1 and FKS2 mutations on echinocandin sensitivity and kinetics of 1,3-β-D-glucan synthase: implication for the existing susceptibility breakpoint. Antimicrob Agents Chemother 53:3690–3699

    Article  CAS  Google Scholar 

  • Gardiner RE, Souteropoulos P, Park S, Perlin DS (2005) Characterization of Aspergillus fumigatus mutants with reduced susceptibility to caspofungin. Med Mycol 43:S299–S305

    Article  CAS  Google Scholar 

  • Ha YS, Covert SF, Momany M (2006) FsFKS1, the 1,3-β-glucan synthase from the caspofungin-resistant fungus Fusarium solani. Eukaryot Cell 5:1036–1042

    Article  CAS  Google Scholar 

  • Howard SJ, Arendrup MC (2011) Acquired antifungal drug resistance in Aspergillus fumigatus: epidemiology and detection. Med Mycol 49:S90–S95

    Article  CAS  Google Scholar 

  • Klich M, Mendoza C, Mullaney E, Keller N, Bennett JW (2001) A new sterigmatocystin-producing Emericella variant from agricultural desert soils. Syst Appl Microbiol 24:131–138

    Article  CAS  Google Scholar 

  • Lewis RE, Albert ND, Kontoyiannis DP (2008) Comparison of the dose-dependent activity and paradoxical effect of caspofungin and micafungin in a neutropenic murine model of invasive pulmonary aspergillosis. J Antimicrob Chemother 61:1140–1144

    Article  CAS  Google Scholar 

  • McCluskey K (2003) The Fungal Genetics Stock Center, from molds to molecules. Adv Appl Microbiol 52:245–262

    Article  Google Scholar 

  • Moreno AB, del Pozo AM, Borja M, San Segudo B (2003) Activity of the antifungal protein from Aspergillus giganteus against Botrytis cinerea. Phytopathology 93:1344–1353

    Article  CAS  Google Scholar 

  • Ouedraogo JP, Hagen S, Spielvogel A, Engelhardt S, Meyer V (2011) Survival strategies of yeast and filamentous fungi against the antifungal protein AFP. J Biol Chem 286:13859–13868

    Article  CAS  Google Scholar 

  • Pacetti SA, Gelone SP (2003) Caspofungin acetate for treatment of invasive fungal infections. Ann Pharmacother 37:90–98

    Article  CAS  Google Scholar 

  • Park S, Kelly R, Kahn JN, Robles J, Hsu MJ, Register E, Li W, Vyas V, Fan H, Abruzzo G, Flattery A, Gill C, Chrebet G, Parent SA, Kurtz M, Teppler H, Douglas CM, Perlin DS (2005) Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates. Antimicrob Agents Chemother 49:3264–3273

    Article  CAS  Google Scholar 

  • Perlin DS (2007) Resistance to echinocandin-class antifungal drugs. Drug Resist Updates 10:121–130

    Article  CAS  Google Scholar 

  • Pfaller MA, Messer SA, Boyken L, Rice C, Tendolkar S, Hollis RJ, Diekema DJ (2003) Caspofungin activity against clinical isolates of fluconazole-resistant Candida. J Clin Microbiol 41:5729–5731

    Article  CAS  Google Scholar 

  • Plaine A, Walker L, Da Costa G, Mora-Montes HM, McKinnon A, Gow NA, Gaillardin C, Munro CA, Richard ML (2008) Functional analysis of Candida albicans GPI-anchored proteins: roles in cell wall integrity and caspofungin sensitivity. Fungal Genet Biol 45:1404–1414

    Article  CAS  Google Scholar 

  • Pócsi I, Leiter É, Kwon NJ, Shin KS, Kwon GS, Pusztahelyi T, Emri T, Abuknesha R, Price R, Yu JH (2009) Asexual sporulation signaling regulates autolysis of Aspergillus nidulans via modulating the chitinase ChiB production. J Appl Microbiol 107:514–523

    Article  Google Scholar 

  • Pusztahelyi T, Molnár Z, Emri T, Klement É, Miskei M, Kerékgyártó J, Balla J, Pócsi I (2006) Comparative studies on differential expression of chitinolytic enzymes encoded by chiA, chiB, chiC and nagA genes in Aspergillus nidulans. Folia Microbiol 51:547–554

    Article  CAS  Google Scholar 

  • Shedletzky E, Unger C, Delmer DP (1997) A microtiter-based fluorescence assay for (1,3)-β-glucan synthases. Anal Biochem 249:88–93

    Article  CAS  Google Scholar 

  • Stevens DA, Ichinomiya M, Koshi Y, Horiuchi H (2006) Escape of Candida from caspofungin inhibition at concentrations above the MIC (paradoxical effect) accomplished by increased cell wall chitin; evidence for β-1,6-glucan synthesis inhibition by caspofungin. Antimicrob Agents Chemother 50:3160–3161

    Article  CAS  Google Scholar 

  • Tóth V, Nagy CT, Miskei M, Pócsi I, Emri T (2011) Polyphasic characterization of "Aspergillus nidulans var. roseus" ATCC 58397. Folia Microbiol 56:381–388

    Article  Google Scholar 

  • Walker LA, Gow NAR, Munro CA (2010) Fungal echinocandin resistance. Fungal Genet Biol 47:117–126

    Google Scholar 

  • Wiederhold NP (2009) Paradoxical echinocandin activity: a limited in vitro phenomenon? Med Mycol 47(Suppl 1)S369–S375

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Emri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tóth, V., Nagy, C.T., Pócsi, I. et al. The echinocandin B producer fungus Aspergillus nidulans var. roseus ATCC 58397 does not possess innate resistance against its lipopeptide antimycotic. Appl Microbiol Biotechnol 95, 113–122 (2012). https://doi.org/10.1007/s00253-012-4027-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4027-y

Keywords

Navigation