Skip to main content
Log in

Recent progress in understanding thiamin biosynthesis and its genetic regulation in Saccharomyces cerevisiae

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The yeast Saccharomyces cerevisiae is able to synthesize thiamin pyrophosphate (TPP) de novo, which involves the independent formation of two ring structures, 2-methyl-4-amino-5-hydroxymethylpyrimidine and 4-methyl-5-β-hydroxyethylthiazole, in the early steps. In addition, this organism can efficiently utilize thiamin from the extracellular environment to produce TPP. Nineteen genes involved in the synthesis of TPP and the utilization of thiamin (THI genes) have been identified, and the function of several THI genes has been elucidated. All THI genes participating in the synthesis of the pyrimidine unit belong to multigene families. It is also intriguing that some thiamin biosynthetic proteins are composed of two distinct domains or form an enzyme complex. The expression of THI genes is coordinately induced in response to thiamin starvation. It is likely that the induction of THI genes is activated by a positive regulatory factor complex and that the protein–protein interaction among the factors is disturbed by TPP. Thiamin-hyperproducing yeast and fermented food containing a high content of thiamin are expected to be available in the future based on the progress in understanding thiamin biosynthesis and its genetic regulation in S. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baker LJ, Dorocke JA, Harris RA, Timm DE (2001) The crystal structure of yeast thiamin pyrophosphokinase. Structure 9:539–546

    CAS  PubMed  Google Scholar 

  • Begley TP (1996) The biosynthesis and degradation of thiamin (vitamin B1). Nat Prod Rep 13:177–185

    CAS  PubMed  Google Scholar 

  • Begley TP, Downs DM, Ealick SE, McLafferty FW, Van Loon AP, Taylor S, Campobasso N, Chiu HJ, Kinsland C, Reddick JJ, Xi J (1999) Thiamin biosynthesis in prokaryotes. Arch Microbiol 171:293–300

    CAS  PubMed  Google Scholar 

  • Belitsky BR (2004) Physical and enzymological interaction of Bacillus subtilis proteins required for de novo pyridoxal 5′-phosphate biosynthesis. J Bacteriol 186:1191–1196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Braun EL, Fuge EK, Padilla PA, Werner-Washburne M (1996) A stationary-phase gene in Saccharomyces cerevisiae is a member of a novel, highly conserved gene family. J Bacteriol 178:6865–6872

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burdick R (1998) Thiamin. In: Howe-Grant M (ed) Kirk-Othmer encyclopedia of chemical technology, vol 25. Wiley, New York, pp 152–171

    Google Scholar 

  • Burns KE, Xiang Y, Kinsland CL, McLafferty FW, Begley TP (2005) Reconstitution and biochemical characterization of a new pyridoxal 5′-phosphate biosynthetic pathway. J Am Chem Soc 127:3623–3682

    Google Scholar 

  • Cheng G, Bennett EM, Begley TP, Ealick SE (2002) Crystal structure of 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate kinase from Salmonella typhimurium at 2.3 A resolution. Structure 10:225–235

    CAS  PubMed  Google Scholar 

  • Dickinson JR, Lanterman MM, Danner DJ, Pearson BM, Sanz P, Harrison SJ, Hewlins MJ (1997) A 13C nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae. J Biol Chem 272:26871–26878

    CAS  PubMed  Google Scholar 

  • Dohmen RJ, Stappen R, McGrath JP, Forrova H, Kolarov J, Goffeau A, Varshavsky A (1995) An essential yeast gene encoding a homolog of ubiquitin-activating enzyme. J Biol Chem 270:18099–18109

    CAS  PubMed  Google Scholar 

  • Dong YX, Sueda S, Nikawa J, Kondo H (2004) Characterization of the products of the genes SNO1 and SNZ1 involved in pyridoxine synthesis in Saccharomyces cerevisiae. Eur J Biochem 271:745–752

    CAS  PubMed  Google Scholar 

  • Dorrestein PC, Huili Zhai H, Taylor SV, McLafferty FW, Begley TP (2004) The biosynthesis of the thiazole phosphate moiety of thiamin (vitamin B1): the early steps catalyzed by thiazole synthase. J Am Chem Soc 126:3091–3096

    CAS  PubMed  Google Scholar 

  • Enjo F, Nosaka K, Ogata M, Iwashima A, Nishimura H (1997) Isolation and characterization of a thiamin transport gene, THI10, from Saccharomyces cerevisiae. J Biol Chem 272:19165–19170

    CAS  PubMed  Google Scholar 

  • Fankhauser H, Zurlinden A, Schweingruber AM, Edenharter E, Schweingruber ME (1995) Schizosaccharomyces pombe thiamin pyrophosphokinase is encoded by gene tnr3 and is a regulator of thiamine metabolism, phosphate metabolism, mating, and growth. J Biol Chem 270:28457–28462

    CAS  PubMed  Google Scholar 

  • Faou P, Tropschug M (2003) A novel binding protein for a member of CyP40-type cyclophilins: N. crassa CyPBP37, a growth and thiamine regulated protein homolog to yeast Thi4p. J Mol Biol 333:831–844

    CAS  PubMed  Google Scholar 

  • Faou P, Tropschug M (2004) Neurospora crassa CyPBP37: a cytosolic stress protein that is able to replace yeast Thi4p function in the synthesis of vitamin B1. J Mol Biol s344:1147–1157

    Google Scholar 

  • Friedrich W (1988) Vitamins. Walter de Gruyter, Berlin

    Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274:563–567

    Google Scholar 

  • Haas AL, Laun NP, Begley TP (2005) Thi20, a remarkable enzyme from Saccharomyces cerevisiae with dual thiamin biosynthetic and degradation activities. Bioorg Chem 33:338–344

    CAS  PubMed  Google Scholar 

  • Haj-Ahmad Y, Bilinski CA, Russell I, Stewart GG (1992) Thiamine secretion in yeast. Can J Microbiol 38:1156–1161

    CAS  PubMed  Google Scholar 

  • Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, Hannett NM, Tagne JB, Reynolds DB, Yoo J, Jennings EG, Zeitlinger J, Pokholok DK, Kellis M, Rolfe PA, Takusagawa KT, Lander ES, Gifford DK, Fraenkel E, Young RA (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431:99–104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hohmann S, Meacock PA (1998) Thiamin metabolism and thiamin diphosphate-dependent enzymes in the yeast Saccharomyces cerevisiae: genetic regulation. Biochim Biophys Acta 1385:201–219

    CAS  PubMed  Google Scholar 

  • Iwashima A, Nishino H, Nose Y (1973) Carrier-mediated transport of thiamine in baker’s yeast. Biochim Biophys Acta 330:222–234

    CAS  PubMed  Google Scholar 

  • Iwashima A, Nosaka K, Nishimura H, Kimura Y (1986) Some properties of a Saccharomyces cerevisiae mutant resistant to 2-amino-4-methyl-5-β-hydroxyethylthiazole. J Gen Microbiol 132:1541–1546

    CAS  PubMed  Google Scholar 

  • Iwashima A, Kawasaki Y, Kimura Y (1990a) Transport of 2-methyl-4-amino-5-hydroxymethylpyrimidine in Saccharomyces cerevisiae. Biochim Biophys Acta 1022:211–214

    CAS  PubMed  Google Scholar 

  • Iwashima A, Kawasaki Y, Kimura Y (1990b) Transport overshoot during 2-methyl-4-amino-5-hydroxymethylpyrimidine uptake by Saccharomyces cerevisiae. Biochim Biophys Acta 1028:161–164

    CAS  PubMed  Google Scholar 

  • Kawasaki Y (1993) Copurification of hydroxyethylthiazole kinase and thiamine-phosphate pyrophosphorylase of Saccharomyces cerevisiae: characterization of hydroxyethylthiazole kinase as a bifunctional enzyme in the thiamine biosynthetic pathway. J Bacteriol 175:5153–5158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawasaki Y, Nosaka K, Kaneko Y, Nishimura H, Iwashima A (1990) Regulation of thiamine biosynthesis in Saccharomyces cerevisiae. J Bacteriol 172:6145–6147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawasaki Y, Onozuka M, Mizote T, Nosaka K (2005) Biosynthesis of hydroxymethylpyrimidine pyrophosphate in Saccharomyces cerevisiae. Curr Genet 47:156–162

    CAS  PubMed  Google Scholar 

  • Kimura Y, Iwashima A (1987) Occurrence of thiaminase II in Saccharomyces cerevisiae. Experientia 43:888–890

    CAS  PubMed  Google Scholar 

  • Kondo H, Nakata A, Horikawa N, Li Y, Sueda S (2004) Analysis of glutaminase activity involved in yeast pyridoxine biosynthesis. In: Proceedings for 56th meeting of the Vitamin Society of Japan. Vitamins (in Japanese), p 244

  • Lawhorn BG, Mehl RA, Begley TP (2004) Biosynthesis of the thiamin pyrimidine: the reconstitution of a remarkable rearrangement reaction. Org Biomol Chem 2:2538–2546

    CAS  PubMed  Google Scholar 

  • Leonardi R, Roach PL (2004) Thiamine biosynthesis in Escherichia coli: in vitro reconstitution of the thiazole synthase activity. J Biol Chem 279:17054–17062

    CAS  PubMed  Google Scholar 

  • Linnett PE, Walker J (1968) Biosynthesis of thiamine. Incorporation experiments with 14C-labelled substrates and with (15N)glycine in Saccharomyces cerevisiae. Biochem J 109:161–168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Llorente B, Dujon B (2000) Transcriptional regulation of the Saccharomyces cerevisiae DAL5 gene family and identification of the high affinity nicotinic acid permease TNA1 (YGR260w). FEBS Lett 475:237–241

    CAS  PubMed  Google Scholar 

  • Llorente B, Fairhead C, Dujon B (1999) Genetic redundancy and gene fusion in the genome of the baker’s yeast Saccharomyces cerevisiae: functional characterization of a three-member gene family involved in the thiamine biosynthetic pathway. Mol Microbiol 32:1140–1152

    CAS  PubMed  Google Scholar 

  • Machado CR, Praekelt UM, de Oliveira RC, Barbosa AC, Byrne KL, Meacock PA, Menck CF (1997) Dual role for the yeast THI4 gene in thiamine biosynthesis and DNA damage tolerance. J Mol Biol 273:114–121

    CAS  PubMed  Google Scholar 

  • Marobbio CM, Vozza A, Harding M, Bisaccia F, Palmieri F, Walker JE (2002) Identification and reconstitution of the yeast mitochondrial transporter for thiamine pyrophosphate. EMBO J 21:5653–5661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mayr C, Richter K, Lilie H, Buchner J (2000) Cpr6 and Cpr7, two closely related Hsp90-associated immunophilins from Saccharomyces cerevisiae, differ in their functional properties. J Biol Chem 275:34140–34146

    CAS  PubMed  Google Scholar 

  • McGrath JP, Jentsch S, Varshavsky A (1991) UBA1: an essential yeast gene encoding ubiquitin-activating enzyme. EMBO J 10:227–236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Medina-Silva R, Barros MP, Galhardo RS, Netto LE, Colepicolo P, Menck CF (2005) Heat stress promotes mitochondrial instability and oxidative responses in yeast deficient in thiazole biosynthesis. Res Microbiol 157(3):275–281

    PubMed  Google Scholar 

  • Mittenhuber G (2001) Phylogenetic analyses and comparative genomics of vitamin B6 (pyridoxine) and pyridoxal phosphate biosynthesis pathways. J Mol Microbiol Biotechnol 3:1–20

    CAS  PubMed  Google Scholar 

  • Morett E, Korbel JO, Rajan E, Saab-Rincon G, Olvera L, Olvera M, Schmidt S, Snel B, Bork P (2003) Systematic discovery of analogous enzymes in thiamin biosynthesis. Nat Biotechnol 21:790–795

    CAS  PubMed  Google Scholar 

  • Muller EH, Richards EJ, Norbeck J, Byrne KL, Karlsson KA, Pretorius GHJ, Meacock PA, Blomberg A, Hohmann S (1999) Thiamine repression and pyruvate decarboxylase autoregulation independently control the expression of the Saccharomyces cerevisiae PDC5 gene. FEBS Lett 449:245–250

    CAS  PubMed  Google Scholar 

  • Nakai Y, Umeda N, Suzuki T, Nakai M, Hayashi H, Watanabe K, Kagamiyama H (2004) Yeast Nfs1p is involved in thio-modification of both mitochondrial and cytoplasmic tRNAs. J Biol Chem 279:12363–12368

    CAS  PubMed  Google Scholar 

  • Nishimura H, Kawasaki Y, Nosaka K, Kaneko Y, Iwashima A (1991) A constitutive thiamine metabolism mutation, thi80, causing reduced thiamine pyrophosphokinase activity in Saccharomyces cerevisiae. J Bacteriol 173:2716–2719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nosaka K, Kaneko Y, Nishimura H, Iwashima A (1989) A possible role for acid phosphatase with thiamin-binding activity encoded by PHO3 in yeast. FEMS Microbiol Lett 51:55–59

    CAS  PubMed  Google Scholar 

  • Nosaka K, Yamanishi K, Nishimura H, Iwashima A (1992) Upstream activation element of the PHO3 gene encoding for thiamine-repressible acid phosphatase in Saccharomyces cerevisiae. FEBS Lett 305:244–248

    CAS  PubMed  Google Scholar 

  • Nosaka K, Kaneko Y, Nishimura H, Iwashima A (1993) Isolation and characterization of a thiamin pyrophosphokinase gene, THI80, from Saccharomyces cerevisiae. J Biol Chem 268:17440–17447

    CAS  PubMed  Google Scholar 

  • Nosaka K, Nishimura H, Kawasaki Y, Tsujihara T, Iwashima A (1994) Isolation and characterization of the THI6 gene encoding a bifunctional thiamin-phosphate pyrophosphorylase/hydroxyethylthiazole kinase from Saccharomyces cerevisiae. J Biol Chem 269:30510–30516

    CAS  PubMed  Google Scholar 

  • Nosaka K, Onozuka M, Konno H, Kawasaki Y, Nishimura H, Sano M, Akaji K (2005) Genetic regulation mediated by thiamin pyrophosphate-binding motif in Saccharomyces cerevisiae. Mol Microbiol 58:467–479

    CAS  PubMed  Google Scholar 

  • Park JH, Dorrestein PC, Zhai H, Kinsland C, McLafferty FW, Begley TP (2003) Biosynthesis of the thiazole moiety of thiamin pyrophosphate (vitamin B1). Biochemistry 42:12430–12438

    CAS  PubMed  Google Scholar 

  • Praekelt UM, Byrne KL, Meacock PA (1994) Regulation of THI4 (MOL1), a thiamin-biosynthetic gene of Saccharomyces cerevisiae. Yeast 10:481–490

    CAS  PubMed  Google Scholar 

  • Rodriguez-Navarro S, Llorente B, Rodriguez-Manzaneque MT, Ramne A, Uber G, Marchesan D, Dujon B, Herrero E, Sunnerhagen P, Perez-Ortin JE (2002) Functional analysis of yeast gene families involved in metabolism of vitamins B1 and B6. Yeast 19:1261–1276

    CAS  PubMed  Google Scholar 

  • Schweingruber AM, Fankhauser H, Dlugonski J, Steinmann-Loss C, Schweingruber ME (1992) Isolation and characterization of regulatory mutants from Schizosaccharomyces pombe involved in thiamine-regulated gene expression. Genetics 130:445–449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silhankova L (1985a) Yeast mutants excreting vitamin B1 and their use in the production of thiamin rich beers. J Inst Brew 91:78–81

    CAS  Google Scholar 

  • Silhankova L (1985b) Genetic control of thiamin excretion and of its suppression in Saccharomyces cerevisiae. J Inst Brew 91:238–241

    CAS  Google Scholar 

  • Singleton CK (1997) Identification and characterization of the thiamine transporter gene of Saccharomyces cerevisiae. Gene 199:111–121

    CAS  PubMed  Google Scholar 

  • Spenser ID, White RL (1997) Biosynthesis of vitamin B1 (thiamin): an instance of biochemical diversity. Angew Chem Int Ed Engl 36:1032–1046

    CAS  Google Scholar 

  • Tazuya K, Yamada K, Nakamura K, Kumaoka H (1987) The origin of the sulfur atom of thiamin. Biochim Biophys Acta 924:210–215

    CAS  PubMed  Google Scholar 

  • Tazuya K, Yamada K, Kumaoka H (1989) Incorporation of histidine into the pyrimidine moiety of thiamin in Saccharomyces cerevisiae. Biochim Biophys Acta 990:73–79

    CAS  PubMed  Google Scholar 

  • Tazuya K, Yamada K, Kumaoka H (1993) Pyridoxine is a precursor of the pyrimidine moiety of thiamin in Saccharomyces cerevisiae. Biochem Mol Biol Int 30:893–899

    CAS  PubMed  Google Scholar 

  • Toms AV, Haas AL, Park JH, Begley TP, Ealick SE (2005) Structural characterization of the regulatory proteins TenA and TenI from Bacillus subtilis and identification of TenA as a thiaminase II. Biochemistry 44:2319–2329

    CAS  PubMed  Google Scholar 

  • Watanabe-Ishida S, Tazuya K, Yamada K (2005) Precursor of the pyrimidine moiety of thiamin in Saccharomyces cerevisiae. In: Proceedings for international interdisciplinary conference on vitamins, coenzymes, and biofactors 2005. The Vitamin Society of Japan, Kyoto, pp 70

  • Wightman R, Meacock PA (2003) The THI5 gene family of Saccharomyces cerevisiae: distribution of homologues among the hemiascomycetes and functional redundancy in the aerobic biosynthesis of thiamin from pyridoxine. Microbiol 149:1447–1460

    CAS  Google Scholar 

  • White RL, Spenser ID (1979) Thiamin biosynthesis in Saccharomyces cerevisiae. Origin of carbon-2 of the thiazole moiety. Biochem J 179:315–325

    CAS  PubMed  PubMed Central  Google Scholar 

  • White RL, Spenser ID (1982) Thiamin biosynthesis in yeast. Origin of the five-carbon unit of the thiazole moiety. J Am Chem Soc 104:4934–4943

    CAS  Google Scholar 

  • Xi J, Ge Y, Kinsland C, McLafferty FW, Begley TP (2001) Biosynthesis of the thiazole moiety of thiamin in Escherichia coli: identification of an acyldisulfide-linked protein–protein conjugate that is functionally analogous to the ubiquitin/E1 complex. Proc Natl Acad Sci USA 98:8513–8518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeidler J, Sayer BG, Spenser ID (2003) Biosynthesis of vitamin B1 in yeast. Derivation of the pyrimidine unit from pyridoxine and histidine. Intermediacy of urocanic acid. J Am Chem Soc 125:13094–13105

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank Akio Iwashima (Professor Emeritus, Kyoto Prefectural University of Medicine) for the critical reading of the manuscript. I would also like to thank Drs. Yuko Kawasaki and Mari Onozuka for their intellectual and experimental contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuto Nosaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nosaka, K. Recent progress in understanding thiamin biosynthesis and its genetic regulation in Saccharomyces cerevisiae . Appl Microbiol Biotechnol 72, 30–40 (2006). https://doi.org/10.1007/s00253-006-0464-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0464-9

Keywords

Navigation