Skip to main content
Log in

On the utility of fluorescence-detection analytical ultracentrifugation in probing biomolecular interactions in complex solutions: a case study in milk

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

β-Lactoglobulin is the most abundant protein in the whey fraction of ruminant milks, yet is absent in human milk. It has been studied intensively due to its impact on the processing and allergenic properties of ruminant milk products. However, the physiological function of β-lactoglobulin remains unclear. Using the fluorescence-detection system within the analytical ultracentrifuge, we observed an interaction involving fluorescently labelled β-lactoglobulin in its native environment, i.e. cow and goat milk, for the first time. Co-elution experiments support that these β-lactoglobulin interactions occur naturally in milk and provide evidence that the interacting partners are immunoglobulins, while further sedimentation velocity experiments confirm that an interaction occurs between these molecules. The identification of these interactions, made possible through the use of fluorescence-detected analytical ultracentrifugation, provides possible clues to the long debated physiological function of this abundant milk protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FITC:

Fluorescein isothiocyanate

IgG:

Immunoglobulin G

IgA:

Immunoglobulin A

IgM:

Immunoglobulin M

AUC:

Analytical ultracentrifugation

References

  • Almaas H, Cases AL, Devold TG, Holm H, Langsrud T, Aabakken L, Aadnoey T, Vegarud GE (2006) In vitro digestion of bovine and caprine milk by human gastric and duodenal enzymes. Int Dairy J 16(9):961–968

    Article  CAS  Google Scholar 

  • Breustedt DA, Korndörfer IP, Redl B, Skerra A (2005) The 1.8-Å crystal structure of human tear lipocalin reveals an extended branched cavity with capacity for multiple ligands. J Biol Chem. 280(1):484–493

    Article  CAS  PubMed  Google Scholar 

  • Brookes E, Cao W, Demeler B (2010) A two-dimensional spectrum analysis for sedimentation velocity experiments of mixtures with heterogeneity in molecular weight and shape. Eur Biophys J 39(3):405–414

    Article  PubMed  Google Scholar 

  • Burgess BR, Dobson RCJ, Bailey MF, Atkinson SC, Griffin MDW, Jameson GB, Parker MW, Gerrard JA, Perugini MA (2008) Structure and evolution of a novel dimeric enzyme from a clinically important bacterial pathogen. J Biol Chem 283(41):27598–27603

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi SK, Ma J, Zhao H, Schuck P (2017) Use of fluorescence-detected sedimentation velocity to study high-affinity protein interactions. Nat Protoc 12(9):1777–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho Y, Singh H, Creamer LK (2003) Heat-induced interactions of β-lactoglobulin A and κ-casein B in a model system. J Dairy Res 70(1):61–71

    Article  CAS  PubMed  Google Scholar 

  • Crowther JM, Lassé M, Suzuki H, Kessans SA, Loo TS, Norris GE, Hodgkinson AJ, Jameson GB, Dobson RCJ (2014) Ultra-high resolution crystal structure of recombinant caprine β-lactoglobulin. FEBS Lett 588(21):3816–3822

    Article  CAS  PubMed  Google Scholar 

  • Demeler B, Gorbet G (2016) Analytical ultracentrifugation data analysis with ultrascan-III. In: Uchiyama S, Arisaka F, Stafford W, Laue T (eds) Analytical ultracentrifugation. Springer, Tokyo

    Google Scholar 

  • Demeler B, Van Holde KE (2004) Sedimentation velocity analysis of highly heterogeneous systems. Anal Biochem 335(2):279–288

    Article  CAS  PubMed  Google Scholar 

  • Demeule B, Shire SJ, Liu J (2009) A therapeutic antibody and its antigen form different complexes in serum than in phosphate-buffered saline: a study by analytical ultracentrifugation. Anal Biochem 388(2):279–287

    Article  CAS  PubMed  Google Scholar 

  • Flower DR, North ACT, Sansom CE (2000) The lipocalin protein family: structural and sequence overview. Biochim Biophys Acta Protein Struct Mol Enzymol 1482(1–2):9–24

    Article  CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) The Proteomics Protocols Handbook pp 571–608

  • Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK (2002) The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 10:1033–1043

    Article  CAS  PubMed  Google Scholar 

  • Han Y, You X, Xing W, Zhang Z, Zou W (2018) Paracrine and endocrine actions of bone—the functions of secretory proteins from osteoblasts, osteocytes, andosteoclasts. Bone Res 6(1):1–11

    Article  CAS  Google Scholar 

  • Hufnagl K, Ghosh D, Wagner S, Fiocchi A, Dahdah L, Bianchini R, Braun N, Steinborn R, Hofer M, Blaschitz M et al (2018) Retinoic acid prevents immunogenicity of milk lipocalin Bos d 5 through binding to its immunodominant T-cell epitope. Sci Rep 8(1):1–12

    Article  CAS  Google Scholar 

  • Hurley WL, Theil PK (2011) Perspectives on immunoglobulins in colostrum and milk. Nutrients 3(4):442–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husain B, Mukerji I, Cole JL (2012) Analysis of high-affinity binding of protein kinase R to double-stranded RNA. Biochemistry 51(44):8764–8770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kingsbury JS, Laue TM, Chase SF, Connors LH (2012) Detection of high-molecular-weight amyloid serum protein complexes using biological on-line tracer sedimentation. Anal Biochem 425(2):151–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kingsbury JS, Laue TM, Klimtchuk ES, Théberge R, Costello CE, Connors LH (2008) The modulation of transthyretin tetramer stability by cysteine 10 adducts and the drug diflunisal: direct analysis by fluorescence-detected analytical ultracentrifugation. J Biol Chem 283(18):11887–11896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokona B, May CA, Cunningham NR, Richmond L, Jay Garcia F, Durante JC, Ulrich KM, Roberts CM, Link CD, Stafford WF et al (2016) Studying polyglutamine aggregation in Caenorhabditis elegans using an analytical ultracentrifuge equipped with fluorescence detection. Protein Sci 25(3):605–617

    Article  CAS  PubMed  Google Scholar 

  • Kontopidis G, Holt C, Sawyer L (2002) The ligand-binding site of bovine β-lactoglobulin: evidence for a function? J Mol Biol 318(4):1043–1055

    Article  CAS  PubMed  Google Scholar 

  • Krayukhina E, Noda M, Ishii K, Maruno T, Wakabayashi H, Tada M, Suzuki T, Ishii-Watabe A, Kato M, Uchiyama S (2017) Analytical ultracentrifugation with fluorescence detection system reveals differences in complex formation between recombinant human TNF and different biological TNF antagonists in various environments. MAbs 9(4):664–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroe RR, Laue TM (2009) NUTS and BOLTS: applications of fluorescence detected sedimentation. Anal Biochem 390(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Laue TM, Shah BD, Ridgeway TM, Pelletier SL (1992) Analytical Ultracentrifugation in Biochemistry and Polymer Science. Harding S, Rowe A (eds.) Royal Society of Chemistry

  • Manderson GA, Hardman MJ, Creamer LK (1998) Effect of heat treatment on the conformation and aggregation of β-lactoglobulin A, B, and C. J Agric Food Chem 46(12):5052–5061

    Article  CAS  Google Scholar 

  • Marzahn MR, Marada S, Lee J, Nourse A, Kenrick S, Zhao H, Ben-Nissan G, Kolaitis R, Peters JL, Pounds S et al (2016) Higher-order oligomerization promotes localization of SPOP to liquid nuclear speckles. EMBO J 35(12):1254–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Maux S, Bouhallab S, Giblin L, Brodkorb A, Croguennec T (2014) Bovine β-lactoglobulin/fatty acid complexes: Binding, structural, and biological properties. Dairy Sci Technol 94(5):409–426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olshina MA, Angley LM, Ramdzan YM, Tang J, Bailey MF, Hill AF, Hatters DM (2010) Tracking mutant huntingtin aggregation kinetics in cells reveals three major populations that include an invariant oligomer pool. J Biol Chem 285(28):21807–21816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez MD, Calvo M (1995) Interaction of β-lactoglobulin with retinol and fatty acids and its role as a possible biological function for this protein: a review. J Dairy Sci 78(5):978–988

    Article  PubMed  Google Scholar 

  • Ponniah K, Loo TS, Edwards PJB, Pascal SM, Jameson GB, Norris GE (2010) The production of soluble and correctly folded recombinant bovine β-lactoglobulin variants A and B in Escherichia coli for NMR studies. Protein Expr Purif 70(2):283–289

    Article  CAS  PubMed  Google Scholar 

  • Qin BY, Bewley MC, Creamer LK, Baker HM, Baker EN, Jameson GB (1998) Structural basis of the tanford transition of bovine β-lactoglobulin. Biochemistry 37(40):14014–14023

    Article  CAS  PubMed  Google Scholar 

  • Schiefner A, Skerra A (2015) The menagerie of human lipocalins: a natural protein scaffold for molecular recognition of physiological compounds. Acc Chem Res 48(4):976–985

    Article  CAS  PubMed  Google Scholar 

  • Schuck P (2000) Size—distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J 78(2000):1606–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seppälä M, Taylor RN, Koistinen H, Koistinen R, Milgrom E (2002) Glycodelin: a major lipocalin protein of the reproductive axis with diverse actions in cell recognition and differentiation. Endocr Rev 23(4):401–430

    Article  PubMed  CAS  Google Scholar 

  • Sia AK, Allred BE, Raymond KN (2013) Siderocalins: siderophore binding proteins evolved for primary pathogen host defense. Curr Opin Chem Biol 17(2):150–157

    Article  CAS  PubMed  Google Scholar 

  • De Simone G, Ascenzi P, Di Masi A, Polticelli F (2017) Nitrophorins and nitrobindins: structure and function. Biomol Concepts 8(2):105–118

    Article  PubMed  CAS  Google Scholar 

  • Stelwagen K, Carpenter E, Haigh B, Hodgkinson A, Wheeler TT (2009) Immune components of bovine colostrum and milk. J Anim Sci 87(13 Suppl):3–9

    Article  CAS  PubMed  Google Scholar 

  • Virtanen T, Kinnunen T, Rytkönen-Nissinen M (2012) Mammalian lipocalin allergens—insights into their enigmatic allergenicity. Clin Exp Allergy 42(4):494–504

    Article  CAS  PubMed  Google Scholar 

  • Wowor AJ, Yu D, Kendall DA, Cole JL (2011) Energetics of SecA dimerization. J Mol Biol 408(1):87–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright RT, Hayes DB, Stafford WF, Sherwood PJ, Correia JJ (2018) Characterization of therapeutic antibodies in the presence of human serum proteins by AU-FDS analytical ultracentrifugation. Anal Biochem 550:72–83

    Article  CAS  PubMed  Google Scholar 

  • Zhu T, Bailey MF, Angley LM, Cooper TF, Dobson RCJ (2010) The quaternary structure of pyruvate kinase type 1 from Escherichia coli at low nanomolar concentrations. Biochimie 92(1):116–120

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the following for funding support, in part: (1) the New Zealand Ministry of Business, Innovation and Employment, (2) the New Zealand Royal Society Marsden Fund, (3) the Biomolecular Interaction Centre, University of Canterbury, and (4) The Riddet Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jennifer M. Crowther, Alison J. Hodgkinson or Renwick C. J. Dobson.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest or competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue: Analytical Ultracentrifugation 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crowther, J.M., Broadhurst, M., Laue, T.M. et al. On the utility of fluorescence-detection analytical ultracentrifugation in probing biomolecular interactions in complex solutions: a case study in milk. Eur Biophys J 49, 677–685 (2020). https://doi.org/10.1007/s00249-020-01468-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-020-01468-3

Keywords

Navigation