Skip to main content
Log in

Membrane flickering of the human erythrocyte: physical and chemical effectors

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Recent studies suggest a link between adenosine triphosphate (ATP) concentration and the amplitude of cell membrane flickering (CMF) in the human erythrocyte (red blood cell; RBC). Potentially, the origin of this phenomenon and the unique discocyte shape could be active processes that account for some of the ATP turnover in the RBC. Active flickering could depend on several factors, including pH, osmolality, enzymatic rates and metabolic fluxes. In the present work, we applied the data analysis described in the previous article to study time courses of flickering RBCs acquired using differential interference contrast light microscopy in the presence of selected effectors. We also recorded images of air bubbles in aqueous detergent solutions and oil droplets in water, both of which showed rapid fluctuations in image intensity, the former showing the same type of spectral envelope (relative frequency composition) to RBCs. We conclude that CMF is not directly an active process, but that ATP affects the elastic properties of the membrane that flickers in response to molecular bombardment in a manner that is described mathematically by a constrained random walk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

BSA:

Bovine serum albumin

CMF:

Cell membrane flickering

CRW:

Constrained random walk

DIC:

Differential interference contrast

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

Ht :

Haematocrit

HT:

Heat-treatment

NEM:

N-Ethylmaleimide

OA:

Okadaic acid

PDAc:

Phorbol 12,13-diacetate

PKC:

Protein kinase C

RBC:

Red blood cell

References

  • Bauer J, Lauf PK (1983) Thiol-dependent passive K/Cl transport in sheep red cells: III. Differential reactivity of membrane SH groups with \(N\)-ethylmaleimide and iodoacetamide. J Memb Biol 73:257–261

    Article  CAS  Google Scholar 

  • Ben-Isaac E, Park YK, Popescu G, Brown FLH, Gov NS, Shokef Y (2011) Effective temperature of red-blood-cell membrane fluctuations. Phys Rev Lett 106:238103

    Article  PubMed  CAS  Google Scholar 

  • Benesch RE, Benesch R (1954) Relation between erythrocyte integrity and sulfhydryl groups. Arch Biochem Biophys 48:38–42

    Article  PubMed  CAS  Google Scholar 

  • Bennett V, Baines AJ (2001) Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev 81:1353–1392

    PubMed  CAS  Google Scholar 

  • Betz T, Lenz M, Joanny JF, Sykes C (2009) ATP-dependent mechanics of red blood cells. Proc Natl Acad Sci USA 106:15320–15325

    Article  PubMed Central  PubMed  Google Scholar 

  • Blowers R, Clarkson EM, Maizels M (1951) Flicker phenomenon in human erythrocytes. J Physiol 113:228–239

    PubMed Central  PubMed  CAS  Google Scholar 

  • Boss D, Hoffmann A, Rappaz B, Depeursinge C, Magistretti PJ, Van de Ville D, Marquet P (2012) Spatially-resolved eigenmode decomposition of red blood cells membrane fluctuations questions the role of ATP in flickering. PLoS One 7:e40667

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brochard F, Lennon JF (1975) Frequency spectrum of the flicker phenomenon in erythrocytes. J Phys (Fr) 36:1035–1047

    Article  Google Scholar 

  • Browicz T (1890) Weitere beobachtungen uber bewegungsphanomene an roten blutkorperchen in pathologischen zustanden. Zbl Med Wissen 28:625–627

    Google Scholar 

  • Cabot RC (1901) A guide to the clinical examination of the blood, 4th edn. Longmans, Green and Co., London

  • Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka Y (1982) Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem 257:7847–7851

    PubMed  CAS  Google Scholar 

  • Cohen P, Holmes CFB, Tsukitani Y (1990) Okadaic acid: a new probe for the study of cellular regulation. Trends Biochem Sci 15:98–102

    Article  PubMed  CAS  Google Scholar 

  • Connor J, Schroit AJ (1990) Aminophospholipid translocation in erythrocytes: evidence for the involvement of a specific transporter and an endofacial protein. Biochemistry 29:37–43

    Article  PubMed  CAS  Google Scholar 

  • Evans J, Gratzer W, Mohandas N, Parker K, Sleep J (2008) Fluctuations of the red blood cell membrane: relation to mechanical properties and lack of ATP dependence. Biophys J 94:4134–4144

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Feig SA, Shohet SB, Nathan DG (1971) Energy metabolism in human erythrocytes: I. Effects of sodium fluoride. J Clin Invest 50:1731–1737

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fricke K, Sackmann E (1984) Variation of frequency spectrum of the erythrocyte flickering caused by aging, osmolarity, temperature, and pathological changes. Biochim Biophys Acta Mol Cell Res 803:145–152

    Article  CAS  Google Scholar 

  • Gov NS, Safran SA (2005) Red blood cell membrane fluctuations and shape controlled by ATP-induced cytoskeletal defects. Biophys J 88:1859–1874

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Green FA (1967) Erythrocyte membrane sulfhydryl groups and Rh antigen activity. Immunochemistry 4:247–257

    Article  PubMed  CAS  Google Scholar 

  • Grimes AJ (1980) Human red cell metabolism. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Krol AY, Grinfeldt MG, Levin SV, Smilgavichus AD (1990) Local mechanical oscillations of the cell surface within the range 0.2–30 Hz. Eur Biophys J 19:93–99

    Article  PubMed  Google Scholar 

  • Kuchel PW (2004) Current status and challenges in connecting models of erythrocyte metabolism to experimental reality. Prog Biophys Mol Biol 85:325–342

    Article  PubMed  CAS  Google Scholar 

  • Levin S, Korenstein R (1991) Membrane fluctuations in erythrocytes are linked to MgATP-dependent dynamic assembly of the membrane skeleton. Biophys J 60:733–737

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Malenka RC, Madison DV, Nicoll RA (1986) Potentiation of synaptic transmission in the hippocampus by phorbol esters. Nature 321:175–177

    Article  PubMed  CAS  Google Scholar 

  • Manno S, Takakuwa Y, Mohandas N (2005) Modulation of erythrocyte membrane mechanical function by protein 4.1 phosphorylation. J Biol Chem 280:7581–7587

    Article  PubMed  CAS  Google Scholar 

  • McIntyre LM, Thorburn DR, Bubb WA, Kuchel PW (1989) Comparison of computer simulations of the F-type and L-type non-oxidative hexose monophosphate shunts with 31P-NMR experimental data from human erythrocytes. Eur J Biochem 180:399–420

    Article  PubMed  CAS  Google Scholar 

  • Park YK, Best-Popescu CA, Dasari RR, Popescu G (2001) Light scattering of human red blood cells during metabolic remodeling of the membrane. J Biomed Opt 16:011013

    Article  CAS  Google Scholar 

  • Park YK, Best CA, Auth T, Gov NS, Safran SA, Popescu G, Suresh S, Feld MS (2010) Metabolic remodeling of the human red blood cell membrane. Proc Natl Acad Sci USA 107:1289–1294

    Article  PubMed Central  PubMed  Google Scholar 

  • Puckeridge M, Kuchel PW (2014) Membrane flickering of the human erythrocyte: described by a constrained random walk. Eur Biophys J (Accompanying article)

  • Puckeridge M, Chapman BE, Conigrave AD, Grieve SM, Figtree GA, Kuchel PW (2013) Stoichiometric relationship between Na\(^+\) ions transported and glucose consumed in human erythrocytes: bayesian analysis of \(^{23}\)Na and \(^{13}\)C NMR time course data. Biophys J 104:1676–1684

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Szekely D, Yau TW, Kuchel PW (2009) Human erythrocyte flickering: temperature, ATP concentration, water transport, and cell aging, plus a computer simulation. Eur Biophys J 38:923–939

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi T, Nishino K, Itokawa Y (1984) Improved determination of transketolase activity in erythrocytes. Clin Chem 30:658–661

    PubMed  CAS  Google Scholar 

  • Thomas TH, West IC, Wilkinson R (1995) Modification of erythrocyte Na\(^+\)/Li\(^+\) countertransport kinetics by two types of thiol group. Biochim Biophys Acta Biomembr 1235:317–322

    Article  Google Scholar 

  • Tuvia S, Almagor A, Bitler A, Levin S, Korenstein R, Yedgar S (1997) Cell membrane fluctuations are regulated by medium macroviscosity: evidence for a metabolic driving force. Proc Natl Acad Sci USA 94:5045–5049

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yau TW, Kuchel RP, Koh JMS, Szekely D, Mirtschin PJ, Kuchel PW (2012) Cytoskeletal rearrangements in human red blood cells induced by snake venoms: light microscopy of shapes and NMR studies of membrane function. Cell Biol Int 36:87–97

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by a Discovery Project Grant from the Australian Research Council to PWK (DP0345961) and an Australia Postgraduate Award to MP. All computer code was written in Mathematica, and a copy of these files can be obtained from either MP or PWK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip W. Kuchel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (f 587 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puckeridge, M., Chapman, B.E., Conigrave, A.D. et al. Membrane flickering of the human erythrocyte: physical and chemical effectors. Eur Biophys J 43, 169–177 (2014). https://doi.org/10.1007/s00249-014-0952-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-014-0952-2

Keywords

Navigation