Skip to main content

Advertisement

Log in

Analysis of Bacterial Microbiota of Aerated Compost Teas and Effect on Tomato Growth

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Mature composts and their water-based extracts, known as aerated compost teas (ACTs), are biofertilizers that share bioactive effects like soil restoration and plant health promotion, widely used for sustainable agriculture. Bioactive effects of compost and ACTs could be associated with their physicochemical and biological characteristics, like carbon/nitrogen (C/N) ratio and microbiota structure respectively. In our study, we elaborated ACTs using mature homemade compost, wheat bran, and grass clippings, following the C/N ratio criteria. Irrigation of tomato plantlets with ACT whose C/N ratio was close to the expected C/N ratio for mature compost evidenced plant growth promotion. Exploring the bacterial microbiota of elaborated ACTs and origin compost revealed significant structural differences, including phyla involved in N mineralization and free-living N-fixing bacteria. Therefore, ACTs harbor diverse bacterial microbiota involved in the N cycle, which would enrich plant and soil bacterial communities at the taxonomic and functional levels. Furthermore, ACTs are considered a part of agroecological and circular economy approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets presented in this study can be found in online repositories. Aerated compost teas 16S rRNA-based-metagenomes data can be retrieved from the NCBI database through BioProject PRJNA842379.

References

  1. Ahmad R, Jilani G, Arshad M et al (2007) Bio-conversion of organic wastes for their recycling in agriculture: an overview of perspectives and prospects. Ann Microbiol 57:471–479

    Article  Google Scholar 

  2. Rath PP, Das K, Pattanaik S (2022) Microbial activity during composting and plant growth impact: a review. J Pure Appl Microbiol 16:63–73

    Article  CAS  Google Scholar 

  3. Antoniou A, Tsolakidou MD, Stringlis IA, Pantelides IS (2017) Rhizosphere microbiome recruited from a suppressive compost improves plant fitness and increases protection against vascular wilt pathogens of tomato. Front Plant Sci 8:2022

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mehta CM, Palni U, Franke-Whittle IH, Sharma AK (2014) Compost: its role, mechanism and impact on reducing soil-borne plant diseases. Waste Manag 34:607–622

    Article  CAS  PubMed  Google Scholar 

  5. Zhen Z, Liu H, Wang N et al (2014) Effects of manure compost application on soil microbial community diversity and soil microenvironments in a temperate cropland in China. PLoS ONE 9:e108555. https://doi.org/10.1371/journal.pone.0108555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Carvalhais LC, Dennis PG, Fan B et al (2013) Linking plant nutritional status to plant-microbe interactions. PLoS ONE 8:e68555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Antunes LP, Martins LF, Pereira RV et al (2016) Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics. Sci Rep 6:38915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lazicki P, Geisseler D, Lloyd M (2020) Nitrogen mineralization from organic amendments is variable but predictable. J Environ Qual 49:483–495. https://doi.org/10.1002/jeq2.20030

    Article  CAS  PubMed  Google Scholar 

  9. Meng Q, Yang W, Men M et al (2019) Microbial community succession and response to environmental variables during cow manure and corn straw composting. Front Microbiol 10:529

    Article  PubMed  PubMed Central  Google Scholar 

  10. Azim K, Soudi B, Boukhari S et al (2018) Composting parameters and compost quality: a literature review. Org Agr 8:141–158. https://doi.org/10.1007/s13165-017-0180-z

    Article  Google Scholar 

  11. Eiland F, Klamer M, Lind AM, Leth M, Bååth E (2001) Influence of initial C/N ratio on chemical and microbial composition during long term composting of straw. Microb Ecol 41:272–280. https://doi.org/10.1007/s002480000071

  12. Sokač T, Valinger D, Benković M et al (2022) Application of optimization and modeling for the composting process enhancement. Processes 10:229. https://doi.org/10.3390/pr10020229

    Article  CAS  Google Scholar 

  13. Norton JM, Schimel JP (2011) Nitrogen mineralization immobilization turnover. In P. M. Huang (ed.), Handbook of Soil Science, Second Edition ed. CRC Press.

  14. González-Hernández AI, Suárez-Fernández MB, Pérez-Sánchez R et al (2021) Compost tea induces growth and resistance against Rhizoctonia solani and Phytophthora capsici in pepper. Agronomy 11:781

    Article  Google Scholar 

  15. Otero M, Salcedo I, Txarterina K, González-Murua C, Duñabeitia MK (2020) Compost tea reduces the susceptibility of Pinus radiata to Fusarium circinatum in nursery production. Phytopathology 110:813–821

    Article  CAS  PubMed  Google Scholar 

  16. Sulewski P, Kais K, Gołaś M et al (2021) Home bio-waste composting for the circular economy. Energies 14:6164. https://doi.org/10.3390/en14196164

    Article  Google Scholar 

  17. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis". Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Caporaso JG, Lauber CL, Walters WA et al (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 108(Suppl):4516–22

    Article  CAS  PubMed  Google Scholar 

  19. Joos L, Beirinckx S, Haegeman A et al (2020) Daring to be differential: metabarcoding analysis of soil and plant-related microbial communities using amplicon sequence variants and operational taxonomical units. BMC Genomics 21:733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chong J, Liu P, Zhou G et al (2020) Using microbiomeanalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc 15:799–821. https://doi.org/10.1038/s41596-019-0264-1

    Article  CAS  PubMed  Google Scholar 

  22. Dhariwal A, Chong J, Habib S et al (2017) MicrobiomeAnalyst - a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res 45:W180-188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu YX, Qin Y, Chen T et al (2021) A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell 12:315–330

    Article  PubMed  Google Scholar 

  24. Cameron ES, Schmidt PJ, Tremblay BJ et al (2021) Enhancing diversity analysis by repeatedly rarefying next generation sequencing data describing microbial communities. Sci Rep 11:22302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tiquia SM (2005) Microbiological parameters as indicators of compost maturity. J Appl Microbiol 99:816–828

    Article  CAS  PubMed  Google Scholar 

  26. Blaya J, Marhuenda FC, Pascual JA, Ros M (2016) Microbiota characterization of compost using omics approaches opens new perspectives for Phytophthora root rot control. PLoS ONE 11:e0158048

    Article  PubMed  PubMed Central  Google Scholar 

  27. Danial WH, Taib RM, Samah MAA et al (2020) The valorization of municipal grass waste for the extraction of cellulose nanocrystals. RSC Adv 10:42400–42407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Merali Z, Collins SRA, Elliston A et al (2015) Characterization of cell wall components of wheat bran following hydrothermal pretreatment and fractionation. Biotechnol Biofuels 8:23

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hestrin R, Lee MR, Whitaker BK, Pett-Ridge J (2021) The switchgrass microbiome: a review of structure, function, and taxonomic distribution. Phytobiomes J 5:14–28

    Article  Google Scholar 

  30. Marín F, Santos M, Diánez F et al (2013) Characters of compost teas from different sources and their suppressive effect on fungal phytopathogens. World J Microbiol Biotechnol 29:1371–1382

    Article  PubMed  Google Scholar 

  31. Ouyang Y, Norton JM (2020) Short-term nitrogen fertilization affects microbial community composition and nitrogen mineralization functions in an agricultural soil. Appl Environ Microbiol 86:e02278-e2319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aasfar A, Bargaz A, Yaakoubi K et al (2021) Nitrogen fixing Azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Front Microbiol 12:628379

    Article  PubMed  PubMed Central  Google Scholar 

  33. Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111:743–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Palese AM, Pane C, Villecco D et al (2021) Effects of organic additives on chemical, microbiological and plant pathogen suppressive properties of aerated municipal waste compost teas. Appl Sci 11:7402. https://doi.org/10.3390/app11167402

    Article  CAS  Google Scholar 

  35. Wang N, Li H, Wang B et al (2021) Taxonomic and functional diversity of rhizosphere microbiome recruited from compost synergistically determined by plant species and compost. Front Microbiol 12:798476

    Article  PubMed  Google Scholar 

  36. Wang X, Reilly K, Heathcott R et al (2022) Soil nitrogen treatment alters microbiome networks across farm niches. Front Microbiol 12:786156

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cuartero J, Özbolat O, Sánchez-Navarro V et al (2022) Long-term compost amendment changes interactions and specialization in the soil bacterial community, increasing the presence of beneficial N-cycling genes in the soil. Agronomy 12:316. https://doi.org/10.3390/agronomy12020316

    Article  CAS  Google Scholar 

  38. Chen F, Zhang J, Ji HJ et al (2021) Deinococcus radiodurans exopolysaccharide inhibits Staphylococcus aureus biofilm formation. Front Microbiol 12:712086

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bali R, Pineault J, Chagnon PL, Hijri M (2021) Fresh compost tea application does not change rhizosphere soil bacterial community structure, and has no effects on soybean growth or yield. Plants 10:1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Heisey S, Ryals R, Maaz TM, Nguyen NH (2022) A single application of compost can leave lasting impacts on soil microbial community structure and alter cross-domain interaction networks. Front Soil Sci 2:749212

    Article  Google Scholar 

  41. Kim MJ, Shim CK, Kim YK et al (2015) Effect of aerated compost tea on the growth promotion of lettuce, soybean, and sweet corn in organic cultivation. Plant Pathol J 31:259–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lutz S, Thuerig B, Oberhaensli T et al (2020) Harnessing the microbiomes of suppressive composts for plant protection: from metagenomes to beneficial microorganisms and reliable diagnostics. Front Microbiol 11:1810

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ayankojo IT, Morgan KT, Kadyampakeni DM, Liu GD (2020) Tomato growth, yield, and root development, soil nitrogen and water distribution as affected by nitrogen and irrigation rates on a Florida sandy soil. HortScience horts 55:1744–1755

    Article  CAS  Google Scholar 

  44. Marchi EC, Zotarelli L, Delgado JA, Rowland DL, Marchi G (2016) Use of the nitrogen index to assess nitrate leaching and water drainage from plastic-mulched horticultural cropping systems of Florida Intl. Soil Water Conserv Res 4:237–244

    Article  Google Scholar 

  45. Zotarelli L, Scholberg JM, Dukes MD, Muñoz-Carpena R (2007) Monitoring of nitrate leaching in sandy soils: comparison of three methods. J Environ Qual 36(4):953–962

    Article  CAS  PubMed  Google Scholar 

  46. Brust GE (2019). Management strategies for organic vegetable fertility. In Safety and practice for organic food (pp. 193–212). Academic Press.

  47. Berg G, Rybakova D, Fischer D et al (2020) Microbiome definition re-visited: old concepts and new challenges. Microbiome 8:103

    Article  PubMed  PubMed Central  Google Scholar 

  48. Minamisawa K, Nishioka K, Miyaki T et al (2004) Anaerobic nitrogen-fixing consortia consisting of clostridia isolated from gramineous plants. Appl Environ Microbiol 70:3096–3102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Miyamoto T, Kawahara M, Minamisawa K (2004) Novel endophytic nitrogen-fixing clostridia from the grass Miscanthus sinensis as revealed by terminal restriction fragment length polymorphism analysis. Appl Environ Microbiol 70:6580–6586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bageshwar UK, Srivastava M, Pardha-Saradhi P et al (2017) An environmentally friendly engineered Azotobacter strain that replaces a substantial amount of urea fertilizer while sustaining the same wheat yield. Appl Environ Microbiol 83:e00590-e617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li X, Wang X, Shi X et al (2020) Compost tea-mediated induction of resistance in biocontrol of strawberry Verticillium wilt. J Plant Dis Prot 127:257–268

    Article  Google Scholar 

  52. Zhang J, Cook J, Nearing JT, Zhang J et al (2021) Harnessing the plant microbiome to promote the growth of agricultural crops. Microbiol Res 245:126690

    Article  CAS  PubMed  Google Scholar 

  53. Neher DA, Weicht TR, Bates ST et al (2013) Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times. PLoS ONE 8:e79512

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kalam S, Basu A, Ahmad I et al (2020) Recent understanding of soil acidobacteria and their ecological significance: a critical review. Front Microbiol 11:580024

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lidbury IDEA, Borsetto C, Murphy ARJ et al (2021) Niche-adaptation in plant-associated Bacteroidetes favours specialisation in organic phosphorus mineralisation. ISME J 15:1040–1055

    Article  CAS  PubMed  Google Scholar 

  56. Mujakić I, Piwosz K, Koblížek M (2022) Phylum gemmatimonadota and its role in the environment. Microorganisms 10:151

    Article  PubMed  PubMed Central  Google Scholar 

  57. Luo Y, van Veelen HPJ, Chen S et al (2022) Effects of sterilization and maturity of compost on soil bacterial and fungal communities and wheat growth. Geoderma 409:115598

    Article  CAS  Google Scholar 

  58. Lau SE, Teo WFA, Teoh EY et al (2022) Microbiome engineering and plant biostimulants for sustainable crop improvement and mitigation of biotic and abiotic stresses. Discov Food 2:9. https://doi.org/10.1007/s44187-022-00009-5

    Article  Google Scholar 

Download references

Acknowledgements

To Martin Escoto-Rodríguez (UASLP) who managed the rehabilitation of lab spaces in Facultad de Agronomía y Veterinaria UASLP. We thank the anonymous reviewers for their valuable comments on our manuscript.

Funding

This work was funded by the Consejo Nacional de Ciencia y Tecnología-Secretaría de Educación Pública (CONACyT-SEP Project 236066). VAHA received a fellowship (#806623) from CONACYT for PhD studies (CVU 1034365).

Author information

Authors and Affiliations

Authors

Contributions

JPLA conceived and designed the study. COSO and MGMY conducted experiments. MGMY, COSO, DXVM, GAB, RJG, MRVP, and JPLA analyzed and interpreted data. VAHA and RAB contributed analytical tools. MGMY, VAHA, RAB, and JPLA wrote the paper. All authors read and approved the manuscript.

Corresponding author

Correspondence to José Pablo Lara-Ávila.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 486 kb)

Supplementary file2 (DOCX 17 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Yáñez, M.G., Silva-Ortega, C.O., Hernández-Aranda, V.A. et al. Analysis of Bacterial Microbiota of Aerated Compost Teas and Effect on Tomato Growth. Microb Ecol 86, 959–972 (2023). https://doi.org/10.1007/s00248-022-02156-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02156-9

Keywords

Navigation