Skip to main content

Advertisement

Log in

Resilience of Fungal Communities to Elevated CO2

  • Notes and Short Communications
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Soil filamentous fungi play a prominent role in regulating ecosystem functioning in terrestrial ecosystems. This necessitates understanding their responses to climate change drivers in order to predict how nutrient cycling and ecosystem services will be influenced in the future. Here, we provide a quantitative synthesis of ten studies on soil fungal community responses to elevated CO2. Many of these studies reported contradictory diversity responses. We identify the duration of the study as an influential parameter that determines the outcome of experimentation. Our analysis reconciles the existing globally distributed experiments on fungal community responses to elevated CO2 and provides a framework for comparing results of future CO2 enrichment studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Fierer N, Stichland MS, Liptzin D, Bradford MA, Cleveland CC (2009) Global patterns in belowground communities. Ecol Lett 12:1238–1249

    Article  PubMed  Google Scholar 

  2. Solomon S, Plattner GK, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci U S A 106:1704–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dunbar J, Gallegos-Graves LV, Steven B, Mueller R, Hesse C, Zak DR, Kuske CR (2014) Surface soil fungal and bacterial communities in aspen stands are resilient to 11 years of elevated CO2 and O-3. Soil Biol Biochem 76:227–234

    Article  CAS  Google Scholar 

  4. Nguyen LM, Buttner MP, Cruz P, Smith SD, Robleto EA (2011) Effects of elevated atmospheric CO2 on rhizosphere soil microbial communities in a Mojave Desert ecosystem. J Arid Environ 75:917–925

    Article  PubMed  PubMed Central  Google Scholar 

  5. Blankinship JC, Niklaus PA, Hungate BA (2011) A meta-analysis of responses of soil biota to global change. Oecologia 165:553–565

    Article  PubMed  Google Scholar 

  6. Phillips RP, Meier IC, Bernhardt ES, Grandy AS, Wickings K, Finzi AC (2012) Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Ecol Lett 15:1042–1049

    Article  PubMed  Google Scholar 

  7. Handa IT, Aerts R, Berendse F, Berg MP, Bruder A, Butenschoen O, Chauvet E, Gessner MO, Jabiol J, Makkonent M, McKie BG, Malmqvist B, Peeters ETHM, Scheu S, Schmid B, van Ruijven J, Vos VCA, Hättenscwiler S (2014) Consequences of biodiversity loss for litter decomposition across biomes. Nature 507:218–221

    Article  Google Scholar 

  8. Singh BK, Quince C, Macdonald CA, Khachane A, Thomas N, Al-Soud WA, Sørensen SJ, He Z, White D, Sinclair A, Crooks B, Zhou J, Campbell CD (2014) Loss of microbial diversity in soils is coincident with reductions in some specialized functions. Environ Microbiol 16:2408–2420

    Article  PubMed  Google Scholar 

  9. Tardy V, Mathieu O, Lévêque J, Terrat S, Chabbi A, Lemanceau P, Ranjard L, Maron PA (2014) Stability of soil microbial structure and activity depends on microbial diversity. Environ Microbiol Rep 6:173–183

    Article  CAS  PubMed  Google Scholar 

  10. Curlevski NJA, Drigo B, Cairney JWG, Anderson IC (2014) Influence of elevated atmospheric CO2 and water availability on soil fungal communities under Eucalyptus saligna. Soil Biol Biochem 70:263–271

    Article  CAS  Google Scholar 

  11. Procter AC, Ellis JC, Fay PA, Polley HW, Jackson RB (2014) Fungal community responses to past and future atmospheric CO2 differ by soil type. Appl Environ Microbiol 80:7364–7377

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lipson DA, Kuske CR, Gallegos-Graves LV, Oechel WC (2014) Elevated atmospheric CO2 stimulates soil fungal diversity through increased fine root production in a semiarid shrubland ecosystem. Global Change Biol 20:2555–2565

    Article  Google Scholar 

  13. Anderson IC, Drigo B, Keniry K, Oula G, Chambers SM, Tissue DT, Cairney JWG (2013) Interactive effects of preindustrial, current and future atmospheric CO2 concentrations and temperature on soil fungi associated with two eucalyptus species. FEMS Microbiol Ecol 83:425–437

    Article  CAS  PubMed  Google Scholar 

  14. Lesaulnier C, Papamichail D, McCorkle S, Olview B, Skiena S, Taghavi S, Zak D, van der Lelie D (2008) Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen. Environ Microbiol 10:926–941

    Article  CAS  PubMed  Google Scholar 

  15. Parrent JL, Morris WF, Vilgalys R (2006) CO2-enrichment and nutrient availability alter ectomycorrhizal fungal communities. Ecology 87:2278–2287

    Article  PubMed  Google Scholar 

  16. Janus LR, Angeloni NL, McCormack J, Rier ST, Tuchman NC, Kelly JJ (2005) Elevated atmospheric CO2 alters soil microbial communities associated with trembling aspen (Populus tremuloides) roots. Microb Ecol 50:102–109

    Article  PubMed  Google Scholar 

  17. Klamer M, Roberts MS, Levine LH, Drake BG, Garland JL (2002) Influence of elevated CO2 on the fungal community in a coastal scrub oak forest soil investigated with terminal-restriction fragment length polymorphism analysis. Appl Environ Microbiol 68:4370–4376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Antoninka A, Reich PB, Johnson NC (2011) Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence arbuscular mycorrhizal fungi in a grassland ecosystem. New Phytol 192:200–214

    Article  PubMed  Google Scholar 

  19. Bloch CP, Higgins CL, Willig MR (2007) Effects of large-scale disturbance on metacommunity structure of terrestrial gastropods: temporal trends in nestedness. Oikos 116:395–406

    Article  Google Scholar 

  20. Keddy PA, MacLellan P (1990) Centrifugal organization in forests. Oikos 59:75–84

    Article  Google Scholar 

  21. Klironomos JN, Allen MF, Rillig MC, Piotrowski JS, Makvandi-Nejad S, Wolfe BE, Powell JR (2005) Abrupt rise in atmospheric CO2 overestimates community response in a model plant-soil system. Nature 433:621–624

    Article  CAS  PubMed  Google Scholar 

  22. Hawkes CV, Kivlin SN, Rocca JD, Huguet V, Thomsens MA, Suttle KB (2011) Fungal community responses to precipitation. Global Change Biol 17:1637–1645

    Article  Google Scholar 

Download references

Acknowledgments

The material of the meta-analyses was independently analyzed and discussed as part of the module “Lebensgemeinschaften & Biodiversität” by SDV and his students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stavros D. Veresoglou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 75 kb)

ESM 1

(CSV 4.70 kb)

ESM 1

(CSV 1.48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veresoglou, S.D., Anderson, I.C., de Sousa, N.M.F. et al. Resilience of Fungal Communities to Elevated CO2 . Microb Ecol 72, 493–495 (2016). https://doi.org/10.1007/s00248-016-0795-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0795-8

Keywords

Navigation