Skip to main content
Log in

Dynamics of microcystin-degrading bacteria in mucilage of Microcystis

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

To reveal the process of degradation of hepatotoxic microcystin produced in Microcystis cells during the Microcystis bloom period, we used fluorescence in situ hybridization (FISH) to analyze the population dynamics of microcystin-degrading bacteria in Microcystis mucilage. We designed and applied an oligonucleotide probe targeted to the 16S rRNA sequence of strain Y2 of a microcystin-degrading bacterium (MCD-bacterium), which was isolated from Lake Suwa, Japan. In both the 1998 and 1999 tests, FISH clearly showed that MCD-bacteria existed in the mucilage and that, when a high concentration of cell-bound microcystin was detected, MCD-bacteria exceeded 10% of the sum of bacteria hybridized with group-specific probes. The concentration of MCD-bacteria was highest in summer 1998, when a toxic species, M. viridis, was dominant. There was a high correlation between the number of MCD-bacteria in the mucilage and the concentration of cell-bound microcystin in the lake. Our results suggest that MCD-bacteria responded to changes in the concentration of microcystin and degraded the microcystin when it was released from Microcystis cells. We also analyzed changes in the bacterial community structure associated with the Microcystis colonies by using domain- and group-specific oligonucleotide probes. Changes in the concentrations of the Cytophaga/Flavobacterium group and 8-Proteobacteria, which can degrade macromolecules derived from Microcystis cells, were synchronized with changes in the concentration of Microcystis. The results not only suggest the significant role of MCD-bacteria in detoxification, but also demonstrate a possible sequence of degradation from Microcystis cells to microcystin maintained in the cell, which is then carried out by bacterial consortia in the mucilage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann RI, Binder BJ, Olson RJ, Chrisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    PubMed  CAS  Google Scholar 

  2. Amann RI, Ledwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  3. Amemiya Y, Nakamura O (1986) Some properties of the sheath material. Rep Fac Engineer, Yamanashi Univ 37:70–75

    Google Scholar 

  4. Amemiya Y, Kato K, Nakayama O (1988) Extracellular products of Microcystis species: Formation of slime layer and DOC pool in surrounding waters. Verb Int Ver Limnol 23:1886–1892

    Google Scholar 

  5. Amemiya Y, Kato K, Okino T, Nakayama 0 (1990) Changes in the chemical composition of carbohydrates and proteins in surface water during a bloom of Microcystis in Lake Suwa. Ecol Res 5:153–162

    Article  CAS  Google Scholar 

  6. Brock TD (1970) Prokaryoic diversity: bacteria. In: Michael TM, John MM, Jack P (Eds.) The Biology of Microorganisms, 8th ed. Prentice Hall, NJ, p 684

    Google Scholar 

  7. Brosius J, Dull TL, Sleeter DD, Noller HF (1981) Gene organization and primary structure of a ribosomal RNA operon from Escherichia coll J Mol Biol 148:107–127

    Article  PubMed  CAS  Google Scholar 

  8. Bourne DG, Jones GJ, Blakeley RL, Jones A, Negri AP, Riddles P (1996) Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR. Appl Environ Microbiol 62:4086–4094

    PubMed  CAS  Google Scholar 

  9. Brunberg A-K (1999) Contribution of bacteria in the mucilage of Microcystis spp. (Cyanobacteria) to benthic and pelagic bacterial production in a hypereutrophic lake. FEMS Microbiol Ecol 29:13–22

    Article  CAS  Google Scholar 

  10. Carmichael WW (1992) A status report on planktonic cyanobacteria (blue-green algae) and their toxins. EPA/600/R-92/079, Environmental Monitoring system laboratory, Office of Research and Development, US Environmental Protection Agency, Cincinnati, OH

    Google Scholar 

  11. Colwell RR, Grims DJ (2000) Semantics and strategies, p. 3. In: Colwell RR, Grimes DJ (Eds.) Nonculturable Microorganisms in the Environment. ASM Press, Washington, DC

    Google Scholar 

  12. Cottrell MT, Kirchman DL (2000) Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular weight dissolved organic matter. Appl Environ Microbiol 66:1692–1697

    Article  PubMed  CAS  Google Scholar 

  13. Christoffersen K (1996) Ecological implications of cyanobacterial toxins in aquatic food webs. Phycologia 35: 42–50

    Google Scholar 

  14. Christoffersen K, Lyck S, Winding A (2002) Microbial activity and bacterial community structure during degradation of microcystins. Aquat Microb Ecol 27:125–136

    Article  Google Scholar 

  15. Daft MJ, McCord SB, Stewart WDP (1975) Ecological studies on algal-lysing bacteria in flesh waters. Freshwat Biol 5:577–596

    Article  Google Scholar 

  16. Delong EF, Wickham GS, Pace N (1989) Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243:1360–1363

    Article  PubMed  CAS  Google Scholar 

  17. Fuchs BM, Wallner G, Beisker W, Schwippl I, Ludwig W, Amann R (1998) Flow cytometric analysis of the in situ accessibility of Escherichia coli 16S rRNA for fluorescently labeled oligonucleotide probes. Appl Environ Microbiol 62:1998–2005

    Google Scholar 

  18. Grilli Caiola M, Pellegrini S, Geora FM, Ribaldone A (1991) Bdellovibrio-like bacteria in Microcytsis aeruginosa. Arch Hydrobiol Suppl Algol Stud 64:369

    Google Scholar 

  19. Hodson RE, Dustman WA, Garg RP, Moran MA (1995) In situ PCR for visualization of microscale distribution of specific genes and gene products in prokaryotic communities. Appl Environ Microbiol 61:4074–4082

    PubMed  CAS  Google Scholar 

  20. Jochimsen EM, Carmichael WW, An J, Cardo DM, Cookson ST, Holmes CEM, Antunes BC, de Melo Filho DA, Lyra TM, Barreto VST, Azevedo AMFO, Jarvis WR (1998) Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N Eng J Med 338:873–878

    Article  CAS  Google Scholar 

  21. Jones GJ, Orr PT (1994) Release and degradation of microcystin following algicide treatment of a Microcystis aeruginosa bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay. Wat Res 28:871–876

    Article  CAS  Google Scholar 

  22. Jones GJ, Bourne DG, Blakeley RL, Doelle H (1994) Degradation of the cyanobacterial hepatotoxin microcystin by aquatic bacteria. Natural Toxins 2:228–235

    Article  PubMed  CAS  Google Scholar 

  23. Kato K, Sakamoto M (1983) The function of free-living bacterial fraction in the organic matter metabolism of mesotrophic lake. Arch Hydrobiol 97:287–302

    Google Scholar 

  24. Komárek J (1991) A review of water-bloom forming Microcystis species, with regard to populations from Japan. Arch Hydrobiol Suppl Algol Stud 64:115–127

    Google Scholar 

  25. Lange M, Tolker-Nielsen T, Molin S, Ahring BK (2000) In situ reverse transcription-PCR for monitoring gene expression in individual Methanosarcina mazei S-6 cells. Appl Environ Microbiol 66:1796–1800

    Article  PubMed  CAS  Google Scholar 

  26. Lee N, Nielsen PH, Andereasen KH, Luretschko S, Nielsen JL, Schleifer K-H, Wagner M (1999) Combination of fluorescent in situ hybridization and microautoradiography—new tool for structure-function analysis in microbial ecology. Appl Environ Microbiol 65:1289–1297

    PubMed  CAS  Google Scholar 

  27. Manage PM, Kawabata Z, Nakano S-I (1999) Seasonal changes in densities of cyanophage infectious to Microcystis aeruginosa in a hypereutrophic pond. Hydrobiologia 411:221–216

    Article  Google Scholar 

  28. Manage PM, Kawabata Z, Nakano S-I (2000) Algicidal effect of the bacterium Alcaligenes denitrificans on Microcystis spp. Aquat Microb Ecol 22:111–117

    Article  Google Scholar 

  29. Manz W, Amann R, Ludwig W, Wagner M, Schleifer K-H (1992) Phylogenetic oligooxynucleotide probes for the major subclasses of proteobacteria; problems and solutions. Syst Appl Microbiol 15:593–600

    Google Scholar 

  30. Manz W, Amann R, Ludwig W, Vancanneyt M, Schleifer K-H (1996) Application of a suite of 16SrRNA-specific oligo-nucleotide probes designed to investigate bacteria of the phylum Cytophaga-Flavobacter-Bacterioides in natural environment. Microbiology 142:1097–1106

    Article  PubMed  CAS  Google Scholar 

  31. Marker AFH, Nusch EA, Rai H, Riemann B (1980) The measurement of photosynthetic pigments in fresh waters and standardization of methods: conclusions and recommendations. Arch Hydrobiol Beih 14:91–106

    CAS  Google Scholar 

  32. Nagata S, Soutome H, Tsutsumi T, Hasegawa A, Sekijima M, Sugamata M, Harada K-I, Suganuma M, Ueno Y (1995) Novel monoclonal antibodies against microcystin and their protective activity for hepatotoxicity. Natural Toxins 3:78–86

    Article  PubMed  CAS  Google Scholar 

  33. Nagata S, Tsutsumi T, Hasegawa A, Yoshida F, Ueno Y (1997) Enzyme immunoassay for direct determination of microcystins in environmental water. JAOAC Int 80:408–417

    CAS  Google Scholar 

  34. Ouverney CC, Fuhrman JA (1999) Combined microautography-16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Appl Environ Microbiol 65:1746–1752

    PubMed  CAS  Google Scholar 

  35. Park H-D, Watanabe MF, Harada K-I, Suzuki M, Hayashi H, Okino T (1993) Seasonal variations of Microcystis species and toxic heptapeptide microcystins in Lake Suwa. Environ Toxicol Water Qual 8:425–435

    Article  CAS  Google Scholar 

  36. Park H-D, Iwami C, Watanabe MF, Harada K-I, Okino T, Hayashi H (1998) Temporal variabilities of the concentrations of intra- and extracellular microcystin and toxic Microcystis species in a hypertrophic lake, Lake Suwa, Japan (1991–1994). Environ Toxicol Water Qual 13:61–72

    Article  CAS  Google Scholar 

  37. Park H-D, Sasaki Y, Maruyama T, Yanagisawa E, Hiraishi A, Kato K (2001) Degradation of the cyanobacterial hepato-toxin microcystin by a new bacterium isolated from a hypertrophic lake. Environ Toxicol 16:337–343

    Article  PubMed  CAS  Google Scholar 

  38. Park H-D, Namikoshi M, Brittain SM, Carmichael WW, Murphy T (2001) [D-Leul] microcystin-LR, a new microcystin isolated from waterbloom in a Canadian prairie lake. Toxicon 39:855–862

    Article  PubMed  CAS  Google Scholar 

  39. Poter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  40. Rapala J, Sivonen K, Lyra C, Niemela SL (1997) Variation of microcystins, cyanobacterial hepatotoxins, in Anabaena spp. as a function of growth stimuli. Appl Environ Microbiol 63:2206–2212

    PubMed  CAS  Google Scholar 

  41. Sivonen K (1990) Effect of light, temperature, nitrate orthophosphate, and bacteria on growth of and hepatotoxin production by Oscillatoria agardhii strains. Appl Environ Microbiol 56:2658–2666

    PubMed  CAS  Google Scholar 

  42. Stanier RY (1976) Gram-negative bacteria: aerobic chemoheterotrophs. In: Stanier RY, Adelberg EA, Ingraham JL (Eds.) The Microbial World, 4fh ed. Prentice-Hall, NJ, pp 598–602

    Google Scholar 

  43. Van Hatmen EJ, Zwart G, van Agterveld MP, Gons HJ, Ebert J, Laanbroek HJ (1999) Changes in bacterial and eukaryotic community structure after mass lysis of filamentous cyanobacteria associated with viruses. Appl Environ Microbiol 65:795–801

    Google Scholar 

  44. Watanabe MF, Tsuji K, Watanabe Y, Harada K-I, Suzuki M (1992) Release of hepatotoxin (microcystin) during the decomposition process of Microcystis aeruginosa. Natural Toxins 1:48–53

    Article  PubMed  CAS  Google Scholar 

  45. Weiss P, Schweitzer B, Amman R, Simon M (1996) Identification in situ and dynamics of bacteria on limnetic organic aggregates (Lake Snow). Appl Environ Microbiol 62:1998–2005

    PubMed  CAS  Google Scholar 

  46. Yamamoto Y, Nizuma S, Kuroda N, Sakamoto M (1993) Occurrence of hetrotrophic bacteria causing lysis of cyanobacteria in a eutrophic lake. Jpn J Phycol 41:215–220

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kato.

Additional information

Online publication: 13 June 2003

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maruyama, T., Kato, K., Yokoyama, A. et al. Dynamics of microcystin-degrading bacteria in mucilage of Microcystis . Microb Ecol 46, 279–288 (2003). https://doi.org/10.1007/s00248-002-3007-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-002-3007-7

Keywords

Navigation