Skip to main content

Advertisement

Log in

The Compensatory Reserve Index Responds to Acute Hemodynamic Changes in Patients with Congenital Heart Disease: A Proof of Concept Study

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Patients with congenital heart disease (CHD) who undergo cardiac procedures may become hemodynamically unstable. Predictive algorithms that utilize dense physiologic data may be useful. The compensatory reserve index (CRI) trends beat-to-beat progression from normovolemia (CRI = 1) to decompensation (CRI = 0) in hemorrhagic shock by continuously analyzing unique sets of features in the changing pulse photoplethysmogram (PPG) waveform. We sought to understand if the CRI accurately reflects changing hemodynamics during and after a cardiac procedure for patients with CHD. A transcatheter pulmonary valve replacement (TcPVR) model was used because left ventricular stroke volume decreases upon sizing balloon occlusion of the right ventricular outflow tract (RVOT) and increases after successful valve placement. A single-center, prospective cohort study was performed. The CRI was continuously measured to determine the change in CRI before and after RVOT occlusion and successful TcPVR. Twenty-six subjects were enrolled with a median age of 19 (interquartile range (IQR) 13–29) years. The mean (± standard deviation) CRI decreased from 0.66 ± 0.15 1-min before balloon inflation to 0.53 ± 0.16 (p = 0.03) 1-min after balloon deflation. The mean CRI increased from a pre-valve mean CRI of 0.63 [95% confidence interval (CI) 0.56–0.70] to 0.77 (95% CI 0.71–0.83) after successful TcPVR. In this study, the CRI accurately reflected acute hemodynamic changes associated with TcPVR. Further research is justified to determine if the CRI can be useful as an early warning tool in patients with CHD at risk for decompensation during and after cardiac procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McCracken C, Spector Logan G, Menk Jeremiah S, Knight Jessica H, Vinocur Jeffrey M, Thomas Amanda S, Oster Matthew E, St Louis James D, Moller James H, Kochilas L (2018) Mortality following pediatric congenital heart surgery: an analysis of the causes of death derived from the national death index. J Am Heart Assoc 7(22):e010624. https://doi.org/10.1161/JAHA.118.010624

    Article  PubMed Central  PubMed  Google Scholar 

  2. Berger JT, Holubkov R, Reeder R, Wessel DL, Meert K, Berg RA, Bell MJ, Tamburro R, Dean JM, Pollack MM, Eunice Kennedy Shriver National Institute of Child Health, and Human Development Collaborative Pediatric Critical Care Research Network (2017) Morbidity and mortality prediction in pediatric heart surgery: physiological profiles and surgical complexity. J Thorac Cardiovasc Surg 154(2):620–628.e6. https://doi.org/10.1016/j.jtcvs.2017.01.050

    Article  PubMed Central  PubMed  Google Scholar 

  3. Olive MK, Owens GE (2018) Current monitoring and innovative predictive modeling to improve care in the pediatric cardiac intensive care unit. Transl Pediatr 7(2):120–128. https://doi.org/10.21037/tp.2018.04.03

    Article  PubMed Central  PubMed  Google Scholar 

  4. Moulton SL, Mulligan J, Grudic GZ, Convertino VA (2013) Running on empty? The compensatory reserve index. J Trauma Acute Care Surg 75(6):1053–1059. https://doi.org/10.1097/TA.0b013e3182aa811a

    Article  PubMed  Google Scholar 

  5. Convertino VA, Grudic G, Mulligan J (1985) Moulton S (2013) Estimation of individual-specific progression to impending cardiovascular instability using arterial waveforms. J Appl Physiol 115(8):1196–1202. https://doi.org/10.1152/japplphysiol.00668.2013

    Article  Google Scholar 

  6. Moulton SL, Mulligan J, Santoro MA, Bui K, Grudic GZ, MacLeod D (2017) Validation of a noninvasive monitor to continuously trend individual responses to hypovolemia. J Trauma Acute Care Surg 83(1 Suppl 1):S104–S111. https://doi.org/10.1097/TA.0000000000001511

    Article  PubMed  Google Scholar 

  7. Stewart CL, Nawn CD, Mulligan J, Grudic G, Moulton SL, Convertino VA (2016) Compensatory reserve for early and accurate prediction of hemodynamic compromise: case studies for clinical utility in acute care and physical performance. J Spec Oper Med 16(1):6–13

    PubMed  Google Scholar 

  8. Choi YM, Leopold D, Campbell K, Mulligan J, Grudic GZ, Moulton SL (2018) Noninvasive monitoring of physiologic compromise in acute appendicitis: new insight into an old disease. J Pediatr Surg 53(2):241–246. https://doi.org/10.1016/j.jpedsurg.2017.11.013

    Article  PubMed  Google Scholar 

  9. Stewart CL, Mulligan J, Grudic GZ, Pyle L, Moulton SL (2015) A noninvasive computational method for fluid resuscitation monitoring in pediatric burns: a preliminary report. J Burn Care Res 36(1):145–150. https://doi.org/10.1097/BCR.0000000000000178

    Article  PubMed  Google Scholar 

  10. McElhinney DB, Hellenbrand WE, Zahn EM, Jones TK, Cheatham JP, Lock JE, Vincent JA (2010) Short- and medium-term outcomes after transcatheter pulmonary valve placement in the expanded multicenter US melody valve trial. Circulation 122(5):507–516. https://doi.org/10.1161/circulationaha.109.921692

    Article  PubMed Central  PubMed  Google Scholar 

  11. Callahan R, Bergersen L, Baird CW, Porras D, Esch JJ, Lock JE, Marshall AC (2017) Mechanism of valve failure and efficacy of reintervention through catheterization in patients with bioprosthetic valves in the pulmonary position. Ann Pediatr Cardiol 10(1):11–17. https://doi.org/10.4103/0974-2069.197049

    Article  PubMed Central  PubMed  Google Scholar 

  12. Lurz P, Puranik R, Nordmeyer J, Muthurangu V, Hansen MS, Schievano S, Marek J, Bonhoeffer P, Taylor AM (2009) Improvement in left ventricular filling properties after relief of right ventricle to pulmonary artery conduit obstruction: contribution of septal motion and interventricular mechanical delay. Eur Heart J 30(18):2266–2274. https://doi.org/10.1093/eurheartj/ehp258

    Article  PubMed  Google Scholar 

  13. Khambadkone S, Coats L, Taylor A, Boudjemline Y, Derrick G, Tsang V, Cooper J, Muthurangu V, Hegde SR, Razavi RS, Pellerin D, Deanfield J, Bonhoeffer P (2005) Percutaneous pulmonary valve implantation in humans: results in 59 consecutive patients. Circulation 112(8):1189–1197. https://doi.org/10.1161/circulationaha.104.523266

    Article  PubMed  Google Scholar 

  14. Esper SA, Pinsky MR (2014) Arterial waveform analysis. Best Pract Res Clin Anaesthesiol 28(4):363–380. https://doi.org/10.1016/j.bpa.2014.08.002

    Article  PubMed  Google Scholar 

  15. Convertino VA, Wirt MD, Glenn JF, Lein BC (2016) The compensatory reserve for early and accurate prediction of hemodynamic compromise: a review of the underlying physiology. Shock 45(6):580–590. https://doi.org/10.1097/SHK.0000000000000559

    Article  PubMed  Google Scholar 

  16. Convertino VA, Schiller AM (2017) Measuring the compensatory reserve to identify shock. J Trauma Acute Care Surg 82(6S Suppl 1):S57–S65. https://doi.org/10.1097/TA.0000000000001430

    Article  PubMed  Google Scholar 

  17. Stewart CL, Mulligan J, Grudic GZ, Talley ME, Jurkovich GJ, Moulton SL (2016) The compensatory reserve index following injury: Results of a prospective clinical trial. Shock 46(3 Suppl 1):61–67. https://doi.org/10.1097/SHK.0000000000000647

    Article  PubMed  Google Scholar 

  18. Stewart CL, Mulligan J, Grudic GZ, Convertino VA, Moulton SL (2014) Detection of low-volume blood loss: compensatory reserve versus traditional vital signs. J Trauma Acute Care Surg 77 (6):892–897; discussion 897–898. https://doi.org/10.1097/TA.0000000000000423

  19. Johnson MC, Alarhayem A, Convertino V, Carter R 3rd, Chung K, Stewart R, Myers J, Dent D, Liao L, Cestero R, Nicholson S, Muir M, Schwacha M, Wampler D, DeRosa M, Eastridge B (2018) Compensatory reserve index: performance of a novel monitoring technology to identify the bleeding trauma patient. Shock 49(3):295–300. https://doi.org/10.1097/SHK.0000000000000959

    Article  PubMed  Google Scholar 

  20. Nadler R, Convertino VA, Gendler S, Lending G, Lipsky AM, Cardin S, Lowenthal A, Glassberg E (2014) The value of noninvasive measurement of the compensatory reserve index in monitoring and triage of patients experiencing minimal blood loss. Shock 42(2):93–98. https://doi.org/10.1097/SHK.0000000000000178

    Article  PubMed  Google Scholar 

  21. Janak JC, Howard JT, Goei KA, Weber R, Muniz GW, Hinojosa-Laborde C, Convertino VA (2015) Predictors of the onset of hemodynamic decompensation during progressive central hypovolemia: comparison of the peripheral perfusion index, pulse pressure variability, and compensatory reserve index. Shock 44(6):548–553. https://doi.org/10.1097/SHK.0000000000000480

    Article  CAS  PubMed  Google Scholar 

  22. Feltes TF, Bacha E, Beekman RH 3rd, Cheatham JP, Feinstein JA, Gomes AS, Hijazi ZM, Ing FF, de Moor M, Morrow WR, Mullins CE, Taubert KA, Zahn EM (2011) Indications for cardiac catheterization and intervention in pediatric cardiac disease: a scientific statement from the American Heart Association. Circulation 123(22):2607–2652. https://doi.org/10.1161/CIR.0b013e31821b1f10

    Article  PubMed  Google Scholar 

  23. Bonhoeffer P, Boudjemline Y, Qureshi SA, Le Bidois J, Iserin L, Acar P, Merckx J, Kachaner J, Sidi D (2002) Percutaneous insertion of the pulmonary valve. J Am Coll Cardiol 39(10):1664–1669. https://doi.org/10.1016/s0735-1097(02)01822-3

    Article  PubMed  Google Scholar 

  24. Rhodes John F, Blaufox Andrew D, Seiden Howard S, Asnes Jeremy D, Gross Ronda P, Rhodes Julianna P, Griepp Randall B, Rossi Anthony F (1999) Cardiac arrest in infants after congenital heart surgery. Circulation 100(suppl 2):II-194–II-I99. https://doi.org/10.1161/circ.100.suppl_2.Ii-194

    Article  Google Scholar 

  25. Gupta P, Jacobs JP, Pasquali SK, Hill KD, Gaynor JW, O’Brien SM, He M, Sheng S, Schexnayder SM, Berg RA, Nadkarni VM, Imamura M, Jacobs ML (2014) Epidemiology and outcomes after in-hospital cardiac arrest after pediatric cardiac surgery. Ann Thorac Surg 98(6):2138–2143; discussion 2144. https://doi.org/10.1016/j.athoracsur.2014.06.103

  26. Bose SN, Verigan A, Hanson J, Ahumada LM, Ghazarian SR, Goldenberg N, Stock A, Jacobs JP (2019) Early identification of impending cardiac arrest in neonates and infants in the cardiovascular ICU: a statistical modelling approach using physiologic monitoring data. Cardiol Young 29(11):1340–1348. https://doi.org/10.1017/S1047951119002002

    Article  PubMed  Google Scholar 

  27. McLellan MC, Connor JA (2013) The Cardiac Children's Hospital Early Warning Score (C-CHEWS). J Pediatr Nurs 28(2):171–178. https://doi.org/10.1016/j.pedn.2012.07.009

    Article  PubMed  Google Scholar 

  28. Pollack MM, Patel KM, Ruttimann UE (1996) PRISM III: an updated pediatric risk of mortality score. Crit Care Med 24(5):743–752. https://doi.org/10.1097/00003246-199605000-00004

    Article  CAS  PubMed  Google Scholar 

  29. Eytan D, Jegatheeswaran A, Mazwi ML, Assadi A, Goodwin AJ, Greer RW, Goodfellow SD, Laussen PC (2019) Temporal variability in the sampling of vital sign data limits the accuracy of patient state estimation. Pediatr Crit Care Med 20(7):e333–e341. https://doi.org/10.1097/pcc.0000000000001984

    Article  PubMed  Google Scholar 

  30. Rusin CG, Acosta SI, Shekerdemian LS, Vu EL, Bavare AC, Myers RB, Patterson LW, Brady KM, Penny DJ (2016) Prediction of imminent, severe deterioration of children with parallel circulations using real-time processing of physiologic data. J Thorac Cardiovasc Surg 152(1):171–177. https://doi.org/10.1016/j.jtcvs.2016.03.083

    Article  PubMed Central  PubMed  Google Scholar 

  31. Ruiz VM, Saenz L, Lopez-Magallon A, Shields A, Ogoe HA, Suresh S, Munoz R, Tsui FR (2019) Early prediction of critical events for infants with single-ventricle physiology in critical care using routinely collected data. J Thorac Cardiovasc Surg 158(1):234–243.e233. https://doi.org/10.1016/j.jtcvs.2019.01.130

    Article  PubMed  Google Scholar 

  32. McKiernan CA, Lieberman SA (2005) Circulatory shock in children: an overview. Pediatr Rev 26(12):451–460. https://doi.org/10.1542/pir.26-12-451

    Article  PubMed  Google Scholar 

  33. Hatib F, Jian Z, Buddi S, Lee C, Settels J, Sibert K, Rinehart J, Cannesson M (2018) Machine-learning algorithm to predict hypotension based on high-fidelity arterial pressure waveform analysis. Anesthesiology. https://doi.org/10.1097/aln.0000000000002300

    Article  PubMed  Google Scholar 

  34. Benov A, Yaslowitz O, Hakim T, Amir-Keret R, Nadler R, Brand A, Glassberg E, Yitzhak A, Convertino VA, Paran H (2017) The effect of blood transfusion on compensatory reserve: a prospective clinical trial. J Trauma Acute Care Surg 83(1 Suppl 1):S71–S76. https://doi.org/10.1097/TA.0000000000001474

    Article  PubMed  Google Scholar 

  35. Hinojosa-Laborde C, Fernandez JRD, Muniz GW, Nawn CD, Burns RK, Le TH, Porter KB, Hardy JT, Convertino VA (2017) Effect of pain and analgesia on compensatory reserve. J Trauma Acute Care Surg 83(1 Suppl 1):S92–S97. https://doi.org/10.1097/TA.0000000000001544

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Children’s Hospital Colorado catheterization laboratory for their assistance with the study.

Funding

Development of the CRI algorithm was supported in part by funding from the US Army Medical Research and Material Command (USAMRMC) under Grant Nos. DM09027, W81XWH-15--2-0007, W81XWH-09-1-0750, W81XWH-09-C-0160, W81XWH-11-2-0091, W81XWH-11-2-0085, W81XWH-12-2-0112, and W81XWH-13-C-0121. The views, opinions, and/or findings contained in this manuscript are those of the authors and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation. Additional support was provided by NIH/NCATS Colorado CTSA Grant Number UL1 TR002535. Contents are the authors’ sole responsibility and do not necessarily represent official NIH views.

Author information

Authors and Affiliations

Authors

Contributions

DEE: Concept/design, data analysis/interpretation, drafting article, critical revision of article, approval of article, data collection. DKL: Concept/design, data analysis/interpretation, critical revision of article, approval of article, data collection. RP: Critical revision of article, approval of article, data collection. NS: Critical revision of article, approval of article, data collection. KC: Statistics, critical revision of article, approval of article. MR: Concept/design, critical revision of article, approval of article. JEZ: Critical revision of article, approval of article. SLM: Critical revision of article, approval of article. GM: Concept/design, data analysis/interpretation, critical revision of article, approval of article. JSK: Concept/design, data analysis/interpretation, critical revision of article, approval of article, data collection.

Corresponding author

Correspondence to Daniel E. Ehrmann.

Ethics declarations

Conflict of interest

Drs. Ehrmann and Kim have no conflicts of interests to declare. Dr. Moulton developed the compensatory reserve index algorithm utilized in this study. The underlying intellectual property is assigned to Flashback Technologies, Inc (Boulder, Colorado) and the Regents of the University of Colorado. Dr. Moulton licensed the technology from the University of Colorado and co-founded Flashback Technologies, Inc. Dr. Moulton is a consultant at Flashback Technologies, has an equity interest in the company, and receives royalty payments through the University of Colorado. Drs. Leopold, Morgan, Phillips, Shahi, Ross, Zablah, and Ms. Campbell have no conflicts of interest to declare.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (Colorado Multi-Institutional Review Board at the University of Colorado) and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehrmann, D.E., Leopold, D.K., Phillips, R. et al. The Compensatory Reserve Index Responds to Acute Hemodynamic Changes in Patients with Congenital Heart Disease: A Proof of Concept Study. Pediatr Cardiol 41, 1190–1198 (2020). https://doi.org/10.1007/s00246-020-02374-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-020-02374-3

Keywords

Navigation