Skip to main content

Advertisement

Log in

Fetal Arrhythmias: Genetic Background and Clinical Implications

  • Review Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Fetal arrhythmias are a common phenomenon of pregnancies. However, debates remain with regard to the etiologies and early treatment of choices for severe fetal arrhythmias. The gene regulatory networks govern cardiac conduction system development to produce distinct nodal and fast conduction phenotypes. The slow conduction properties of nodes that display automaticity are determined by the cardiac ion channel genes, whereas the fast conduction properties are regulated by the transcription factors. Mutations of genes specific for the developmental processes and/or functional status of cardiac conduction system including ion channel promoter (minK-lacZ), GATA family of zinc finger proteins (GATA4), the homeodomain transcription factor (Nkx2.5), the homeodomain-only protein (Hop) and the T-box transcription factors (Tbx2, Tbx3 and Tbx5), hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) and connexins, may cause fetal arrhythmias. It is expected that development of investigational antiarrhythmic agents based on genetic researches on cardiac conduction system, and clinical application of percutaneously implantable fetal pacemaker for the treatment of fetal arrhythmias would come to true.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weber R, Stambach D, Jaeggi E (2011) Diagnosis and management of common fetal arrhythmias. J Saudi Heart Assoc 23(2):61–66

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cotton JL (2001) Identification of fetal atrial flutter by Doppler tissue imaging. Circulation 104(10):1206–1207

    Article  PubMed  CAS  Google Scholar 

  3. Alvarez A, Vial Y, Mivelaz Y, Di Bernardo S, Sekarski N, Meijboom EJ (2008) Fetal arrhythmias: premature atrial contractions and supraventricular tachycardia. Rev Med Suisse 4(166):1724–1728 (Article in French)

    PubMed  Google Scholar 

  4. Silverman NH, Enderlein MA, Stanger P, Teitel DF, Heymann MA, Golbus MS (1985) Recognition of fetal arrhythmias by echocardiography. J Clin Ultrasound 13(4):255–263

    Article  PubMed  CAS  Google Scholar 

  5. Trappe H-J (2010) Emergency therapy of maternal and fetal arrhythmias during pregnancy. J Emerg Trauma Shock 3(2):153–159

    Article  PubMed  PubMed Central  Google Scholar 

  6. Strasburger JF, Cheulkar B, Wichman HJ (2007) Perinatal arrhythmias: diagnosis and management. Clin Perinatol 34(4):627–652, vii–viii

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sekarski N, Meijboom EJ, Di Bernardo S, Ksontini TB, Mivelaz Y (2014) Perinatal arrhythmias. Eur J Pediatr 173(8):983–996

    Article  PubMed  Google Scholar 

  8. Bakker ML, Christoffels VM, Moorman AFM (2011) Molecular basis and genetic aspects of the development of the cardiac chambers and conduction system: relevance to heart rhythm. In: Tripathi O, Ravens U, Sanguinetti M (eds) Heart rate and rhythm. Springer, Berlin, pp 231–253

    Chapter  Google Scholar 

  9. Jongbloed MR, Mahtab EA, Blom NA, Schalij MJ, Gittenberger-de Groot AC (2008) Development of the cardiac conduction system and the possible relation to predilection sites of arrhythmogenesis. Sci World J 8:239–269

    Article  CAS  Google Scholar 

  10. Rentschler S, Zander J, Meyers K, France D, Levine R, Porter G, Rivkees SA, Morley GE, Fishman GI (2002) Neuregulin-1 promotes formation of the murine cardiac conduction system. Proc Natl Acad Sci USA 99(16):10464–10469

    Article  PubMed  CAS  Google Scholar 

  11. Mahtab EAF, Jongbloed MRM, Blom NA, Schalij MJ, Gittenberger-de Groot AC (2008) Development of the cardiac conduction system and the possible relation to predilection sites of arrhythmogenesis, with special emphasis on the role of the posterior heart field. https://openaccess.leidenuniv.nl/bitstream/handle/1887/13214/06.pdf?sequence=10. Accessed 29 Sept 2018

  12. Gollob MH, Seger JJ, Gollob TN, Tapscott T, Gonzales O, Bachinski L, Roberts R (2001) Novel PRKAG2 mutation responsible for the genetic syndrome of ventricular preexcitation and conduction system disease with childhood onset and absence of cardiac hypertrophy. Circulation 104(25):3030–3033

    Article  PubMed  CAS  Google Scholar 

  13. Harris BS, Jay PY, Rackley MS, Izumo S, O’Brien TX, Gourdie RG (2004) Transcriptional regulation of cardiac conduction system development: 2004 FASEB cardiac conduction system minimeeting, Washington, DC. Anat Record A 280A(2):1036–1045

    Article  Google Scholar 

  14. Maitra M, Schluterman MK, Nichols HA, Richardson JA, Lo CW, Srivastava D, Garg V (2009) Interaction of Gata4 and Gata6 with Tbx5 is critical for normal cardiac development. Dev Biol 326(2):368–377

    Article  PubMed  CAS  Google Scholar 

  15. Basson CT, Bachinsky DR, Lin RC, Levi T, Elkins JA, Soults J et al (1997) Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet 15(1):30–35

    Article  PubMed  CAS  Google Scholar 

  16. Papadatos GA, Wallerstein PM, Head CE, Ratcliff R, Brady PA, Benndorf K et al (2002) Slowed conduction and ventricular tachycardia after targeted disruption of the cardiac sodium channel gene Scn5a. Proc Natl Acad Sci USA 99(9):6210–6215

    Article  PubMed  CAS  Google Scholar 

  17. Comprehensive cardiac arrhythmia sequencing panel. https://www.preventiongenetics.com/testInfo.php?sel=test&val=Comprehensive+Cardiac+Arrhythmia+Sequencing+Panel. Accessed 29 Sept 2018

  18. NGS fetale herzrythmusstörungen (kardiale arrhythmien). http://de.praenatal-medizin.de/glossary/ngs-fetale-herzrythmusstoerungen-kardiale-arrhythmien/. Accessed 29 Sept 2018

  19. Arrhythmogenic right ventricular dysplasia/cardiomyopathy NGS panel. https://www.asperbio.com/asper-cardiogenetics/arrhythmogenic-right-ventricular-dysplasiacardiomyopathy-ngs-panel/. Accessed 29 Sept 2018

  20. Wloch S, Wloch A, Respondek-Liberska M, Sikora J, Wilk K, Szydlowski L (2003) P306: Analysis of the mode of delivery in cases of fetal premature atrial contractions. Ultrasound Obstet Gynecol 22(Suppl 1):153

    Article  Google Scholar 

  21. Lin AE, O’Brien B, Demmer LA, Almeda KK, Blanco CL, Glasow PF et al (2009) Prenatal features of Costello syndrome: ultrasonographic findings and atrial tachycardia. Prenat Diagn 29(7):682–690

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cuneo BF, Strasburger JF, Wakai RT, Ovadia M (2006) Conduction system disease in fetuses evaluated for irregular cardiac rhythm. Fetal Diagn Ther 21(3):307–313

    Article  PubMed  Google Scholar 

  23. Respondek M, Wloch A, Kaczmarek P, Borowski D, Wilczynski J, Helwich E (1997) Diagnostic and perinatal management of fetal extrasystole. Pediatr Cardiol 18(5):361–366

    Article  PubMed  CAS  Google Scholar 

  24. Donofrio MT, Gullquist SD, Mehta ID, Moskowitz WB (2004) Congenital complete heart block: fetal management protocol, review of the literature, and report of the smallest successful pacemaker implantation. J Perinatol 24(2):112–117

    Article  PubMed  Google Scholar 

  25. Radswiki SA Fetal premature ventricular contractions. https://radiopaedia.org/articles/fetal-premature-ventricular-contractions. Accessed 29 Sept 2018

  26. Krapp M, Kohl T, Simpson JM, Sharland GK, Katalinic A, Gembruch U (2003) Review of diagnosis, treatment, and outcome of fetal atrial flutter compared with supraventricular tachycardia. Heart 89(8):913–917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Lisowski LA, Verheijen PM, Benatar AA, Soyeur DJ, Stoutenbeek P, Brenner JI et al (2000) Atrial flutter in the perinatal age group: diagnosis, management and outcome. J Am Coll Cardiol 35(3):771–777

    Article  PubMed  CAS  Google Scholar 

  28. Samie FH, Jalife J (2001) Mechanisms underlying ventricular tachycardia and its transition to ventricular fibrillation in the structurally normal heart. Cardiovasc Res 50(2):242–250

    Article  PubMed  CAS  Google Scholar 

  29. Suri V, Keepanaseril A, Aggarwal N, Vijayvergiya R (2009) Prenatal management with digoxin and sotalol combination for fetal supraventricular tachycardia: case report and review of literature. Indian J Med Sci 63(9):411–414

    Article  PubMed  Google Scholar 

  30. Ko JK, Deal BJ, Strasburger JF, Benson DW Jr (1992) Supraventricular tachycardia mechanisms and their age distribution in pediatric patients. Am J Cardiol 69(12):1028–1032

    Article  PubMed  CAS  Google Scholar 

  31. Naheed ZJ, Strasburger JF, Deal BJ, Benson DW Jr, Gidding SS (1996) Fetal tachycardia: mechanisms and predictors of hydrops fetalis. J Am Coll Cardiol 27(7):1736–1740

    Article  PubMed  CAS  Google Scholar 

  32. Kannankeril PJ, Gotteiner NL, Deal BJ, Johnsrude CL, Strasburger JF (2003) Location of accessory connection in infants presenting with supraventricular tachycardia in utero: clinical correlations. Am J Perinatol 20(3):115–119

    Article  PubMed  Google Scholar 

  33. Strasburger JF, Wakai RT (2010) Fetal cardiac arrhythmia detection and in utero therapy. Nat Rev Cardiol 7(5):277–290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Jaeggi EE, Fouron JC, Drblik SP (1998) Fetal atrial flutter: Diagnosis, clinical features, treatment, and outcome. J Pediatr 132(2):335–339

    Article  PubMed  CAS  Google Scholar 

  35. Donofrio MT, Moon-Grady AJ, Hornberger LK, Copel JA, Sklansky MS, Abuhamad A, American Heart Association Adults With Congenital Heart Disease Joint Committee of the Council on Cardiovascular Disease in the Young and Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and Council on Cardiovascular and Stroke Nursing, et al (2014) Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation 129(21):2183–2242

    Article  PubMed  Google Scholar 

  36. Oudijk MA, Michon MM, Kleinman CS, Kapusta L, Stoutenbeek P, Visser GH et al (2000) Sotalol in the treatment of fetal dysrhythmias. Circulation 101(23):2721–2726

    Article  PubMed  CAS  Google Scholar 

  37. D’Alto M, Russo MG, Paladini D, Di Salvo G, Romeo E, Ricci C et al (2008) The challenge of fetal dysrhythmias: echocardiographic diagnosis and clinical management. J Cardiovasc Med (Hagerstown) 9(2):153–160

    Article  Google Scholar 

  38. Shah A, Moon-Grady A, Bhogal N, Collins KK, Tacy T, Brook M et al (2012) Effectiveness of sotalol as first-line therapy for fetal supraventricular tachyarrhythmias. Am J Cardiol 109(11):1614–1618

    Article  PubMed  CAS  Google Scholar 

  39. Porat S, Anteby EY, Hamani Y, Yagel S (2003) Fetal supraventricular tachycardia diagnosed and treated at 13 weeks of gestation: a case report. Ultrasound Obstet Gynecol 21(3):302–305

    Article  PubMed  CAS  Google Scholar 

  40. Parilla BV, Strasburger JF, Socol ML (1996) Fetal supraventricular tachycardia complicated by hydrops fetalis: a role for direct fetal intramuscular therapy. Am J Perinatol 13(8):483–486

    Article  PubMed  CAS  Google Scholar 

  41. Wacker-Gussmann A, Strasburger JF, Srinivasan S, Cuneo BF, Lutter W, Wakai RT (2016) Fetal atrial flutter: electrophysiology and associations with rhythms involving an accessory pathway. J Am Heart Assoc 5(6):e003673

    Article  PubMed  PubMed Central  Google Scholar 

  42. Machado MV, Tynan MJ, Curry PV, Allan LD (1988) Fetal complete heart block. Br Heart J 60(6):512–515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Ayed K, Gorgi Y, Sfar I, Khrouf M (2004) Congenital heart block associated with maternal anti SSA/SSB antibodies: a report of four cases. Pathol Biol (Paris) 52(3):138–147 (Article in French)

    Article  CAS  Google Scholar 

  44. Beaves M The fetal bradyarrhythmias. https://www.ogmagazine.org.au/19/2-19/the-fetal-bradycardia/. Accessed 29 Sept 2018

  45. Dey M, Jose T, Shrivastava A, Wadhwa RD, Agarwal R, Nair V (2014) Complete congenital foetal heart block: a case report. Facts Views Vis Obgyn 6(1):39–42

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Lee JY, Hur SE, Lee SK (2012) Prevention of anti-SSA/RO and anti-SSB/LA antibodies-mediated congenital heart block in pregnant woman with systemic lupus erythematosus: a case report. Korean J Obstet Gynecol 55(7):502–506

    Article  Google Scholar 

  47. Perín F, del Rey MRV, Bronte LD, Menduina QF, Nuñez FR, Arguelles JZ, de la Calzada DG, Marin ST, Malfaz FC, Izquierdo AG (2014) Fetal bradycardia: a retrospective study in 9 Spanish centers. An Pediatr (Barc) 81(5):275–282

    Article  Google Scholar 

  48. Jaeggi ET, Hornberger LK, Smallhorn JF, Fouron JC (2005) Prenatal diagnosis of complete atrioventricular block associated with structural heart disease: combined experience of two tertiary care centers and review of the literature. Ultrasound Obstet Gynecol 26(1):16–21

    Article  PubMed  CAS  Google Scholar 

  49. Lopes LM, Tavares GM, Damiano AP, Lopes MA, Aiello VD, Schultz R et al (2008) Perinatal outcome of fetal atrioventricular block: one-hundred-sixteen cases from a single institution. Circulation 118(12):1268–1275

    Article  PubMed  Google Scholar 

  50. Miyoshi T, Maeno Y, Sago H, Inamura N, Yasukouchi S, Kawataki M, Horigome H, Yoda H, Taketazu M, Shozu M, Nii M, Kato H, Hagiwara A, Omoto A, Shimizu W, Shiraishi I, Sakaguchi H, Nishimura K, Nakai M, Ueda K, Katsuragi S, Ikeda T (2015) Fetal bradyarrhythmia associated with congenital heart defects—nationwide survey in Japan. Circ J 79(4):854–861

    Article  PubMed  Google Scholar 

  51. Vesel S, Zavrsnik T, Podnar T (2003) Successful outcome in a fetus with an extremely low heart rate due to isolated complete congenital heart block. Ultrasound Obstet Gynecol 21(2):189–191

    Article  PubMed  CAS  Google Scholar 

  52. Murphy LL, Moon-Grady AJ, Cuneo BF, Wakai RT, Yu S, Kunic JD et al (2012) Developmentally regulated SCN5A splice variant potentiates dysfunction of a novel mutation associated with severe fetal arrhythmia. Heart Rhythm 9(4):590–597

    Article  PubMed  Google Scholar 

  53. Beinder E, Grancay T, Menéndez T, Singer H, Hofbeck M (2001) Fetal sinus bradycardia and the long QT syndrome. Am J Obstet Gynecol 185(3):743–747

    Article  PubMed  CAS  Google Scholar 

  54. Abriel H, Zaklyazminskaya EV (2013) Cardiac channelopathies: genetic and molecular mechanisms. Gene 517(1):1–11

    Article  PubMed  CAS  Google Scholar 

  55. Cuneo BF, Ovadia M, Strasburger JF, Zhao H, Petropulos T, Schneider J, Wakai RT (2003) Prenatal diagnosis and in utero treatment of torsades de pointes associated with congenital long QT syndrome. Am J Cardiol Jun 1;91(11):1395–1398

    Article  PubMed  Google Scholar 

  56. Cuneo BF, Strasburger JF, Yu S, Horigome H, Hosono T, Kandori A, Wakai RT (2013) In utero diagnosis of long QT syndrome by magnetocardiography. Circulation 128(20):2183–2191

    Article  PubMed  Google Scholar 

  57. Chang IK, Shyu MK, Lee CN, Kau ML, Ko YH, Chow SN, Hsieh FJ (2002) Prenatal diagnosis and treatment of fetal long QT syndrome: a case report. Prenat Diagn 22(13):1209–1212

    Article  PubMed  Google Scholar 

  58. Bravo-Valenzuela NJ (2013) Fetal bradycardia and sinus node dysfunction. Pediatr Cardiol 34(5):1250–1253

    Article  PubMed  Google Scholar 

  59. Phoon CK, Kim MY, Buyon JP, Friedman DM (2012) Finding the “PR-fect” solution: what is the best tool to measure fetal cardiac PR intervals for the detection and possible treatment of early conduction disease? Congenit Heart Dis 7(4):349–360

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wakai RT, Leuthold AC, Wilson AD, Martin CB (1997) Association of fetal junctional rhythm and respiratory arrhythmia detected by magnetocardiography. Pediatr Cardiol 18(3):201–203

    Article  PubMed  CAS  Google Scholar 

  61. Eliasson H, Wahren-Herlenius M, Sonesson SE (2011) Mechanisms in fetal bradyarrhythmia: 65 cases in a single center analyzed by Doppler flow echocardiographic techniques. Ultrasound Obstet Gynecol 37(2):172–178

    Article  PubMed  CAS  Google Scholar 

  62. Wiggins DL, Strasburger JF, Gotteiner NL, Cuneo B, Wakai RT (2013) Magnetophysiologic and echocardiographic comparison of blocked atrial bigeminy and 2:1 atrioventricular block in the fetus. Heart Rhythm 10(8):1192–1198

    Article  PubMed  PubMed Central  Google Scholar 

  63. Donofrio MT, Moon-Grady AJ, Hornberger LK, Copel JA, Sklansky MS, Abuhamad A, Cuneo BF, Huhta JC, Jonas RA, Krishnan A, Lacey S, Lee W, Michelfelder EC Sr, Rempel GR, Silverman NH, Spray TL, Strasburger JF, Tworetzky W, Rychik J, American Heart Association Adults With Congenital Heart Disease Joint Committee of the Council on Cardiovascular Disease in the Young and Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and Council on Cardiovascular and Stroke Nursing (2014) Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation 129(21):2183–2242 (Erratum in Circulation 2014;129(21):e512)

    Article  PubMed  Google Scholar 

  64. Breur JM, Visser GH, Kruize AA, Stoutenbeek P, Meijboom EJ (2004) Treatment of fetal heart block with maternal steroid therapy: case report and review of the literature. Ultrasound Obstet Gynecol 24(4):467–472

    Article  PubMed  CAS  Google Scholar 

  65. Jaeggi ET, Fouron JC, Silverman ED, Ryan G, Smallhorn J, Hornberger LK (2004) Transplacental fetal treatment improves the outcome of prenatally diagnosed complete atrioventricular block without structural heart disease. Circulation 110(12):1542–1548

    Article  PubMed  Google Scholar 

  66. Tester DJ, Ackerman MJ (2014) Genetics of long QT syndrome. Methodist Debakey Cardiovasc J 10(1):29–33

    Article  PubMed  PubMed Central  Google Scholar 

  67. Dr S (2012) Ion channelopathies: overview and current status. Rev Cubana Invest Biomed 31(1):1–15

    Google Scholar 

  68. Modell SM, Lehmann MH (2006) The long qt syndrome family of cardiac ion channelopathies: a huGE review. Genet Med 8(3):143–155

    Article  PubMed  CAS  Google Scholar 

  69. Addison S, Munroe PB, Mein C, Cohen M, Fowler D, Sebire NJ et al (2014) 8.2 Cardiac ion channelopathies in unexplained stillbirths. Arch Dis Child Fetal Neonatal Ed 99(Suppl 1):A11

    Article  Google Scholar 

  70. Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, Napolitano C, Schwartz PJ, Joseph RM, Condouris K, Tager-Flusberg H, Priori SG, Sanguinetti MC, Keating MT (2004) Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119(1):19–31

    Article  PubMed  CAS  Google Scholar 

  71. Dai DZ, Zhang GQ, Yang P, Ma YP (2010) Two patterns of ion channelopathies relating to arrhythmias and direct and indirect blockade of ion channels by antiarrhythmic agents. Drug Dev Res 58(1):42–50

    Article  CAS  Google Scholar 

  72. Milanesi R, Baruscotti M, Gnecchi-Ruscone T, DiFrancesco D (2006) Familial sinus bradycardia associated with a mutation in the cardiac pacemaker channel. N Engl J Med 354(2):151–157

    Article  PubMed  CAS  Google Scholar 

  73. Tsai CJ, Nussinov R (2017) Allostery modulates the beat rate of a cardiac pacemaker. J Biol Chem 292(15):6429–6430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Bertram H, Paul T, Beyer F, Kallfelz HC (1996) Familial idiopathic atrial fibrillation with bradyarrhythmia. Eur J Pediatr 155(1):7–10

    Article  PubMed  CAS  Google Scholar 

  75. Aburawi E, Thomson J, Blackburn M (2006) Familial idiopathic atrial fibrillation with fetal bradyarrhythmia. Acta Paediatr 95(12):1700–1702

    Article  PubMed  Google Scholar 

  76. Milano A, Vermeer AMC, Lodder EM, Barc J, Verkerk AO, Postma AV et al (2014) Hcn4 mutations in multiple families with bradycardia and left ventricular noncompaction cardiomyopathy. J Am Coll Cardiol 64(8):745–756

    Article  PubMed  CAS  Google Scholar 

  77. D’Souza A, Pearman CM, Wang Y, Nakao S, Logantha SJRJ, Cox C, Bennett H, Zhang Y, Johnsen AB, Linscheid N, Poulsen PC, Elliott J, Coulson J, McPhee J, Robertson A, da Costa Martins PA, Kitmitto A, Wisløff U, Cartwright EJ, Monfredi O, Lundby A, Dobrzynski H, Oceandy D, Morris GM, Boyett MR (2017) Targeting miR-423-5p reverses exercise training-induced hcn4 channel remodeling and sinus bradycardia. Circ Res 121(9):1058–1068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Fan C, Duhagon M, Oberti C, Chen S, Hiroi Y, Komuro I et al (2003) Novel TBX5 mutations and molecular mechanism for Holt-Oram syndrome. J Med Genet 40(3):e29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Wung SF (2016) Bradyarrhythmias: clinical presentation, diagnosis, and management. Crit Care Nurs Clin North Am 28(3):297–308

    Article  PubMed  Google Scholar 

  80. González-Rodríguez P, Falcón D, Castro MJ, Ureña J, López-Barneo J, Castellano A (2015) Hypoxic induction of T-type Ca2+ channels in rat cardiac myocytes: role of HIF-1α and RhoA/ROCK signalling. J Physiol 593(21):4729–4745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Kinoshita H, Kuwahara K, Takano M, Arai Y, Kuwabara Y, Yasuno S, Nakagawa Y, Nakanishi M, Harada M, Fujiwara M, Murakami M, Ueshima K, Nakao K (2009) T-type Ca2+ channel blockade prevents sudden death in mice with heart failure. Circulation 120(9):743–752

    Article  PubMed  CAS  Google Scholar 

  82. Dzikaite V, Strandberg LS, Ambrosi A, Jagodic M, Janson P, Khademi M et al (2010) MHC genes determine fetal susceptibility in a rat model of congenital heart block. In: International Workshop on Clinical and Molecular Aspects of Congenital, p 269. https://ard.bmj.com/content/annrheumdis/71/Suppl_1/A54.3.full.pdf. Accessed 29 Sept 2018

  83. Hoxha A, Ruffatti A, Ambrosi A, Ottosson V, Hedlund M, Ottosson L, Anandapadamanaban M, Sunnerhagen M, Sonesson SE, Wahren-Herlenius M (2016) Identification of discrete epitopes of Ro52p200 and association with fetal cardiac conduction system manifestations in a rodent model. Clin Exp Immunol 186(3):284–291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Frantisek S, Zuzana V, Katerina P, Petr P, Martina C, Lenka C et al (2006) Expression and transport activity of breast cancer resistance protein (Bcrp/Abcg2) in dually perfused rat placenta and HRP-1 cell line. In: Proceedings of the fifteenth international pharmacology conference, vol 319, p 53

  85. Taipalensuu J, Tavelin S, Lazorova L, Svensson AC, Artursson P (2004) Exploring the quantitative relationship between the level of MDR1 transcript, protein and function using digoxin as a marker of MDR1-dependent drug efflux activity. Eur J Pharm Sci 21(1):69–75

    Article  PubMed  CAS  Google Scholar 

  86. Römermann K, Wanek T, Bankstahl M, Bankstahl JP, Fedrowitz M, Müller M, Löscher W, Kuntner C, Langer O (2013) (R)-[11C]verapamil is selectively transported by murine and human P-glycoprotein at the blood-brain barrier, and not by MRP1 and BCRP. Nucl Med Biol 40(7):873–878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Wang W, Zhao JJ, Wang T, Wang L, Jiang XH (2015) Transplacental transport mechanisms of drugs for transplacental treatment of fetal tachyarrhythmia of MDCKII/MDCKII-BCRP cell line. Yao Xue Xue Bao 50(3):305–311 (Article in Chinese)

    PubMed  Google Scholar 

  88. Loeb GE, Zhou L, Zheng K, Nicholson A, Peck RA, Krishnan A, Silka M, Pruetz J, Chmait R, Bar-Cohen Y (2013) Design and testing of a percutaneously implantable fetal pacemaker. Ann Biomed Eng 41(1):17–27

    Article  PubMed  Google Scholar 

  89. Zhou L, Vest AN, Chmait RH, Bar-Cohen Y, Pruetz J, Silka M, Zheng K, Peck R, Loeb GE (2014) A percutaneously implantable fetal pacemaker. Conf Proc IEEE Eng Med Biol Soc 2014:4459–4463

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Min Yuan.

Ethics declarations

Conflict of interest

Author declares that he has no conflict of interest.

Research Involving Human and Animal Participants

This article does not contain any studies with human participants or animals performed by the author.

Informed Consent

Informed consent is not applicable for this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, SM. Fetal Arrhythmias: Genetic Background and Clinical Implications. Pediatr Cardiol 40, 247–256 (2019). https://doi.org/10.1007/s00246-018-2008-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-018-2008-3

Keywords

Navigation