Skip to main content
Log in

Functional Screening of Intracardiac Cell Transplants Using Two-Photon Fluorescence Microscopy

  • Riley Symposium
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Although the adult mammalian myocardium exhibits a limited ability to undergo regenerative growth, its intrinsic renewal rate is insufficient to compensate for myocyte loss during cardiac disease. Transplantation of donor cardiomyocytes or cardiomyogenic stem cells is considered a promising strategy for reconstitution of cardiac mass, provided the engrafted cells functionally integrate with host myocardium and actively contribute to its contractile force. The authors previously developed a two-photon fluorescence microscopy-based assay that allows in situ screening of donor cell function after intracardiac delivery of the cells. This report reviews the techniques of two-photon fluorescence microscopy and summarizes its application for quantifying the extent to which a variety of donor cell types stably and functionally couple with the recipient myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Assmus B, Schächinger V, Teupe C, Britten M, Lehmann R, Döbert N, Grünwald F, Aicher A, Urbich C, Martin H, Hoelzer D, Dimmeler S, Zeiher AM (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106:3009–3017

    Article  PubMed  Google Scholar 

  2. Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428:668–673

    Article  PubMed  CAS  Google Scholar 

  3. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisen J (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102

    Article  PubMed  CAS  Google Scholar 

  4. Biermann M, Rubart M, Moreno A, Wu J, Josiah-Durant A, Zipes DP (1998) Differential effects of cytochalasin D and 2,3 butanedione monoxime on isometric twitch force and transmembrane action potential in isolated ventricular muscle: implications for optical measurements of cardiac repolarization. J Cardiovasc Electrophysiol 9:1348–1357

    Article  PubMed  CAS  Google Scholar 

  5. Centonze VE, White JG (1998) Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys J 75:2015–2024

    Article  PubMed  CAS  Google Scholar 

  6. de Monvel JB, Scarfone E, Le Calvez S, Ulfendahl M (2003) Image-adaptive deconvolution for three-dimensional deep biological imaging. Biophys J 85:3991–4001

    Article  PubMed  Google Scholar 

  7. Didié M, Christalla P, Schwoerer AP, Ehmke H, Scherschel JA, Rubart M, Soonpaa MH, Field LJ, Eschenhagen T, Zimmermann WH (2008) Derivation of functional cardiomyocytes from parthenogenetic stem cells. Circulation 118:S428; Abstract 3457

  8. Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH, Nolte J, Wolf F, Li M, Engel W, Hasenfuss G (2006) Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440:1199–1203

    Article  PubMed  CAS  Google Scholar 

  9. Guan K, Wagner S, Unsöld B, Maier LS, Kaiser D, Hemmerlein B, Nayernia K, Engel W, Hasenfuss G (2007) Generation of functional cardiomyocytes from adult mouse spermatogonial stem cells. Circ Res 100:1615–1625

    Article  PubMed  CAS  Google Scholar 

  10. Hsieh PC, Segers VF, Davis ME, MacGillivray C, Gannon J, Molkentin JD, Robbins J, Lee RT (2007) Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med 13:970–974

    Article  PubMed  CAS  Google Scholar 

  11. Kehat I, Khimovich L, Caspi O, Gepstein A, Shofti R, Arbel G, Huber I, Satin J, Itskovitz-Eldor J, Gepstein L (2004) Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol 22:1282–1289

    Article  PubMed  CAS  Google Scholar 

  12. Klug MG, Soonpaa MH, Koh GY, Field LJ (1996) Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. J Clin Invest 98:216–224

    Article  PubMed  CAS  Google Scholar 

  13. Laflamme MA, Zbinden S, Epstein SE, Murry CE (2007) Cell-based therapy for myocardial ischemia and infarction: pathophysiological mechanisms. Annu Rev Pathol 2:307–339

    Article  PubMed  CAS  Google Scholar 

  14. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O’Sullivan C, Collins L, Chen Y, Minami E, Gill EA, Ueno S, Yuan C, Gold J, Murry CE (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25:1015–1024

    Article  PubMed  CAS  Google Scholar 

  15. Mauritz C, Schwanke K, Reppel M, Neef S, Katsirntaki K, Maier LS, Nguemo F, Menke S, Haustein M, Hescheler J, Hasenfuss G, Martin U (2008) Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 118:507–517

    Article  PubMed  Google Scholar 

  16. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasumarthi KB, Virag JI, Bartelmez SH, Poppa V, Bradford G, Dowell JD, Williams DA, Field LJ (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668

    Article  PubMed  CAS  Google Scholar 

  17. Oka T, Komuro I (2008) Molecular mechanisms underlying the transition of cardiac hypertrophy to heart failure. Circ J 72(Suppl A):A13–A16

    Article  PubMed  Google Scholar 

  18. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  PubMed  CAS  Google Scholar 

  19. Penn MS, Ellis S, Gandhi S, Greenbaum A, Hodes Z, Mendelsohn FO, Strasser D, Ting AE, Sherman W (2012) Adventitial delivery of an allogeneic bone marrow-derived adherent stem cell in acute myocardial infarction: phase I clinical study. Circ Res 110:304–311

    Article  PubMed  CAS  Google Scholar 

  20. Roell W, Lewalter T, Sasse P, Tallini YN, Choi BR, Breitbach M, Doran R, Becher UM, Hwang SM, Bostani T, von Maltzahn J, Hofmann A, Reining S, Eiberger B, Gabris B, Pfeifer A, Welz A, Willecke K, Salama G, Schrickel JW, Kotlikoff MI, Fleischmann BK (2007) Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature 450:819–824

    Article  PubMed  CAS  Google Scholar 

  21. Rubart M (2004) Two-photon microscopy of cells and tissue. Circ Res 95:1154–1166

    Article  PubMed  CAS  Google Scholar 

  22. Rubart M, Field LJ (2006) Cardiac regeneration: repopulating the heart. Annu Rev Physiol 68:29

    Article  PubMed  CAS  Google Scholar 

  23. Rubart M, Wang E, Dunn KW, Field LJ (2003) Two-photon molecular excitation imaging of Ca2+ transients in Langendorff-perfused mouse hearts. Am J Physiol Cell Physiol 284:C1654–C1668

    PubMed  CAS  Google Scholar 

  24. Rubart M, Pasumarthi KB, Nakajima H, Soonpaa MH, Nakajima HO, Field LJ (2003) Physiological coupling of donor and host cardiomyocytes after cellular transplantation. Circ Res 92:1217–1224

    Article  PubMed  CAS  Google Scholar 

  25. Rubart M, Soonpaa MH, Nakajima H, Field LJ (2004) Spontaneous and evoked intracellular calcium transients in donor-derived myocytes following intracardiac myoblast transplantation. J Clin Invest 114:775–783

    PubMed  CAS  Google Scholar 

  26. Scherschel JA, Soonpaa MH, Srour EF, Field LJ, Rubart M (2008) Adult bone marrow-derived cells do not acquire functional attributes of cardiomyocytes when transplanted into peri-infarct myocardium. Mol Ther 16:1129–1137

    Article  PubMed  CAS  Google Scholar 

  27. Shenje L, Guerin C, Pritchard CA, Ang K, Rubart-von der Lohe M, Soonpaa MH, Field LJ, Galinanes M (2008) Lineage tracing of cardiac explant-derived cells. PLoS ONE 3:e1929

    Article  PubMed  Google Scholar 

  28. Strauer BE, Brehm M, Zeus T, Köstering M, Hernandez A, Sorg RV, Kögler G, Wernet P (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106:1913–1918

    Article  PubMed  Google Scholar 

  29. Young PA, Clendenon SG, Byars JM, Decca RS, Dunn KW (2011) The effects of spherical aberration on multiphoton fluorescence excitation microscopy. J Microsc 242:157–165

    Article  PubMed  CAS  Google Scholar 

  30. Young PA, Clendenon SG, Byars JM, Dunn KW (2011) The effects of refractive index heterogeneity within kidney tissue on multiphoton fluorescence excitation microscopy. J Microsc 242:148–156

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH grant RO1HL075165 to Michael Rubart and the Riley Children’s Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Rubart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, W., Soonpaa, M.H., Field, L.J. et al. Functional Screening of Intracardiac Cell Transplants Using Two-Photon Fluorescence Microscopy. Pediatr Cardiol 33, 929–937 (2012). https://doi.org/10.1007/s00246-012-0314-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-012-0314-8

Keywords

Navigation