Skip to main content
Log in

Convergence of a Relaxed Inertial Forward–Backward Algorithm for Structured Monotone Inclusions

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

In a Hilbert space \({{\mathcal {H}}}\), we study the convergence properties of a class of relaxed inertial forward–backward algorithms. They aim to solve structured monotone inclusions of the form \(Ax + Bx \ni 0\) where \(A:{{\mathcal {H}}}\rightarrow 2^{{\mathcal {H}}}\) is a maximally monotone operator and \(B:{{\mathcal {H}}}\rightarrow {{\mathcal {H}}}\) is a cocoercive operator. We extend to this class of problems the acceleration techniques initially introduced by Nesterov, then developed by Beck and Teboulle in the case of structured convex minimization (FISTA). As an important element of our approach, we develop an inertial and parametric version of the Krasnoselskii–Mann theorem, where joint adjustment of the inertia and relaxation parameters plays a central role. This study comes as a natural extension of the techniques introduced by the authors for the study of relaxed inertial proximal algorithms. An illustration is given to the inertial Nash equilibration of a game combining non-cooperative and cooperative aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In the statements, we use \(t_k\) with index k instead of i to have homogeneous notation of the sequences.

References

  1. Álvarez, F.: On the minimizing property of a second-order dissipative system in Hilbert spaces. SIAM J. Control Optim. 38(4), 1102–1119 (2000)

    Article  MathSciNet  Google Scholar 

  2. Álvarez, F.: Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space. SIAM J. Optim. 14, 773–782 (2004)

    Article  MathSciNet  Google Scholar 

  3. Álvarez, F., Attouch, H.: The Heavy Ball with Friction Dynamical System for Convex Constrained Minimization Problems, Optimization, Namur, 1998. Lecture Notes in Economics and Mathematical Systems, vol. 481, pp. 25–35. Springer, Berlin (2000)

  4. Álvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9(1–2), 3–11 (2001)

    Article  MathSciNet  Google Scholar 

  5. Attouch, H., Cabot, A.: Convergence rates of inertial forward–backward algorithms. SIAM J. Optim. 28(1), 849–874 (2018)

    Article  MathSciNet  Google Scholar 

  6. Attouch, H., Cabot, A.: Convergence of a relaxed inertial proximal algorithm for maximally monotone operators, 2018, HAL-01708905 (2018)

  7. Attouch, H., Chbani, Z., Peypouquet, J., Redont, P.: Fast convergence of inertial dynamics and algorithms with asymptotic vanishing damping. Math. Progr. Ser. B 168, 123–175 (2018)

  8. Attouch, H., Maingé, P.E.: Asymptotic behavior of second-order dissipative evolution equations combining potential with non-potential effects, ESAIM: control. Optim. Calc. Var. 17, 836–857 (2010)

    Article  Google Scholar 

  9. Attouch, H., Peypouquet, J.: The rate of convergence of Nesterov’s accelerated forward-backward method is actually faster than \(\frac{1}{k^2}\). SIAM J. Optim. 26(3), 1824–1834 (2016)

    Article  MathSciNet  Google Scholar 

  10. Attouch, H., Peypouquet, J.: Convergence of inertial dynamics and proximal algorithms governed by maximal monotone operators. Math. Program., Ser. B. https://doi.org/10.1007/s10107-018-1252-x

    Article  MathSciNet  Google Scholar 

  11. Aujol, J.-F., Dossal, C.: Stability of over-relaxations for the forward–backward algorithm, application to FISTA. SIAM J. Optim. 25(4), 2408–2433 (2015)

    Article  MathSciNet  Google Scholar 

  12. Baillon, J.B., Brézis, H.: Une remarque sur le comportement asymptotique des semigroupes non linéaires. Houston J. Math. 2(1), 5–7 (1976)

    MathSciNet  MATH  Google Scholar 

  13. Baillon, J.B., Haddad, G.: Quelques propriétés des opérateurs angle-bornés et \(n\)-cycliquement monotones. Israël J. Math. 26, 137–150 (1977)

    Article  MathSciNet  Google Scholar 

  14. Bauschke, H., Combettes, P.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics. Springer, New York (2011)

    Book  Google Scholar 

  15. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  16. Bot, R.I., Csetnek, E.R.: Second order forward–backward dynamical systems for monotone inclusion problems. SIAM J. Control Optim. 54(3), 1423–1443 (2016)

    Article  MathSciNet  Google Scholar 

  17. Bot, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas-Rachford splitting for monotone inclusion problems. Appl. Math. Comput. 256, 472–487 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Brézis, H.: Opérateurs maximaux monotones dans les espaces de Hilbert et équations d’évolution. Lecture Notes 5, North Holland (1972)

  19. Brézis, H., Browder, F.E.: Nonlinear ergodic theorems. Bull. Am. Math. Soc. 82(6), 959–961 (1976)

    Article  MathSciNet  Google Scholar 

  20. Briceño-Arias, L.M., Combettes, P.L.: A monotone\(+\)skew splitting model for composite monotone inclusions in duality. SIAM J. Optim. 21, 1230–1250 (2011)

    Article  MathSciNet  Google Scholar 

  21. Chambolle, A., Dossal, Ch.: On the convergence of the iterates of the “fast iterative shrinkage/thresholding algorithm”. J. Optim. Theory Appl. 166, 968–982 (2015)

    Article  MathSciNet  Google Scholar 

  22. Chen, G., Rockafellar, R.T.: Convergence rates in forward–backward splitting. SIAM J. Optim. 7, 421–444 (1997)

    Article  MathSciNet  Google Scholar 

  23. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward–backward splitting. Multiscale Model. Simul. 4, 1168–1200 (2005)

    Article  MathSciNet  Google Scholar 

  24. Combettes, P.L., Yamada, I.: Compositions and convex combinations of averaged nonexpansive operators. J. Math. Anal. Appl. 425, 55–70 (2015)

    Article  MathSciNet  Google Scholar 

  25. Eckstein, J.: Splitting methods for monotone operators with applications to parallel optimization, PhD thesis, Massachusetts Institute of Technology (1989)

  26. Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Progr. 55, 293–318 (1992)

    Article  MathSciNet  Google Scholar 

  27. Gabay, D.: Applications of the Method of Multipliers to Variational Inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrangian Methods: Applications to the Solution of Boundary Value Problems, pp. 299–331. North-Holland, Amsterdam (1983)

    Chapter  Google Scholar 

  28. Hofbauer, J., Sorin, S.: Best response dynamics for continuous zero-sum games. Discret. Contin. Dyn. Syst. Ser. B 6, 215–224 (2006)

    MathSciNet  MATH  Google Scholar 

  29. Iutzeler, F., Hendrickx, J.M.: Generic online acceleration scheme for optimization algorithms via relaxation and inertia (2017), arXiv:1603.05398v3 [math.OC]

    Article  MathSciNet  Google Scholar 

  30. Kim, D., Fessler, J.A.: Optimized first-order methods for smooth convex minimization. Math. Progr. 159(1), 81–107 (2016)

    Article  MathSciNet  Google Scholar 

  31. Liang, J., Fadili, J., Peyré, G.: Local linear convergence of forward-backward under partial smoothness. In: Advances in Neural Information Processing Systems, pp. 1970–1978 (2014)

  32. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)

    Article  MathSciNet  Google Scholar 

  33. Lorenz, D.A., Pock, T.: An inertial forward–backward algorithm for monotone inclusions. J. Math. Imaging Vis. 51, 311–325 (2015)

    Article  MathSciNet  Google Scholar 

  34. Maingé, P.-E.: Convergence theorems for inertial KM-type algorithms. J. Comput. Appl. Math. 219, 223–236 (2008)

    Article  MathSciNet  Google Scholar 

  35. Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators. J. Comput. Appl. Math. 155, 447–454 (2003)

    Article  MathSciNet  Google Scholar 

  36. Nesterov, Y.: A method of solving a convex programming problem with convergence rate \(O(1/k^2)\). Soviet Math. Doklady 27, 372–376 (1983)

    MATH  Google Scholar 

  37. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course, Volume 87 of Applied Optimization. Kluwer Academic Publishers, Boston (2004)

    Google Scholar 

  38. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591–597 (1967)

    Article  MathSciNet  Google Scholar 

  39. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1, 123–231 (2013)

    Google Scholar 

  40. Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72, 383–390 (1979)

    Article  MathSciNet  Google Scholar 

  41. Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 4(5), 1–17 (1964)

    Article  Google Scholar 

  42. Raguet, H., Fadili, J., Peyré, G.: A generalized forward–backward splitting. SIAM J. Imaging Sci. 6, 1199–1226 (2013)

    Article  MathSciNet  Google Scholar 

  43. Rockafellar, R.T.: Monotone Operators Associated with Saddle-functions and Minimax Problems. Nonlinear Functional Analysis, Vol. I. In: Browder, F.E. (ed.) Proceedings of Symposia in Pure Mathematical American Mathematical Society (1970)

  44. Su, W., Boyd, S., Candès, E.J.: A differential equation for modeling Nesterov’s accelerated gradient method: theory and insights. Neural Inf. Process. Syst. 27, 2510–2518 (2014)

    MATH  Google Scholar 

  45. Tseng, P.: Applications of a splitting algorithm to decomposition in convex programming and variational inequalities. SIAM J. Control Optim. 29, 119–138 (1991)

    Article  MathSciNet  Google Scholar 

  46. Tseng, P.: A modified forward–backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431–446 (2000)

    Article  MathSciNet  Google Scholar 

  47. Tseng, P.: On accelerated proximal gradient methods for convex-concave optimization, 2008. Technical report (2008)

  48. Villa, S., Salzo, S., Baldassarres, L., Verri, A.: Accelerated and inexact forward–backward. SIAM J. Optim. 23(3), 1607–1633 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hedy Attouch.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Yosida Regularization

Let \(A:{{\mathcal {H}}}\rightarrow 2^{{\mathcal {H}}}\) be a maximally monotone operator. For any \(\mu >0\), its resolvent with index \(\mu \) is defined by \(J_{\mu A} = \left( I + \mu A \right) ^{-1}\). The operator \(J_{\mu A}: {{\mathcal {H}}}\rightarrow {{\mathcal {H}}}\) is nonexpansive and everywhere defined (indeed it is firmly non-expansive). The Yosida regularization of A with parameter \(\mu \) is defined by \( A_{\mu } = \frac{1}{\mu } \left( I- J_{\mu A} \right) \). The operator \(A_{\mu }\) is \(\mu \)-cocoercive: for all \(x, y \in {{\mathcal {H}}}\) we have

$$\begin{aligned} \langle A_{\mu }y - A_{\mu }x, y-x\rangle \ge \mu \Vert A_{\mu }y - A_{\mu }x \Vert ^2 . \end{aligned}$$

This property immediately implies that \(A_{\mu }: {{\mathcal {H}}}\rightarrow {{\mathcal {H}}}\) is \(\frac{1}{\mu }\)-Lipschitz continuous. Another property that proves useful is the resolvent equation (see, for example [18, Proposition 2.6] or [14, Proposition 23.6])

$$\begin{aligned} (A_\mu )_{\theta }= A_{(\theta +\mu )}, \end{aligned}$$

which is valid for any \(\theta , \mu >0\). This property allows to compute simply the resolvents of \(A_\mu \) by

$$\begin{aligned} J_{\theta A_\mu } = \frac{\mu }{\theta + \mu }I + \frac{\theta }{\theta + \mu }J_{(\theta + \mu )A}, \end{aligned}$$

for any \(\theta , \mu >0\). Also note that for any \(x \in {{\mathcal {H}}}\), and any \(\mu >0\)

$$\begin{aligned} A_\mu (x) \in A (J_{\mu A}x)= A( x - \mu A_\mu (x)). \end{aligned}$$
(65)

Finally, for any \(\mu >0\), \(A_{\mu }\) and A have the same solution set, \({\mathrm{zer}}A_{\mu }= {\mathrm{zer}}A\). For a detailed presentation of the properties of the maximally monotone operators and the Yosida approximation, see References [14, 18].

Appendix B: Properties of the Operator \(M_{A,B,\mu }\)

The cocoercivity properties of the operator \(M_{A,B,\mu }\) which is defined by \(M_{A,B,\mu }(x)=\frac{1}{\mu } \left( x- J_{\mu A}( x-\mu B(x))\right) \) play a central role in our analysis.

Lemma B.1

Let A be a maximally monotone operator. Suppose that B is \(\lambda \)-cocoercive, and that \(\mu \in ]0, 2\lambda [\). Then the operator \(M_{A,B,\mu }\) is \(\beta \)-cocoercive with \(\beta = \mu \left( 1-\frac{\mu }{4\lambda }\right) \).

Proof

The proof is based on the link between the cocoercivity property and the \(\alpha \)-averaged property. Recall that \(T: {{\mathcal {H}}}\rightarrow {{\mathcal {H}}}\) is \(\alpha \)-averaged if \(T= (1-\alpha )I + \alpha R\)  for some nonexpansive operator \(R: {{\mathcal {H}}}\rightarrow {{\mathcal {H}}}\), and \(\alpha \in ]0,1[\). The operators \(J_{\mu A}\) and \(I-\mu B\) are respectively \(\alpha _1:= \frac{1}{2}\) and \(\alpha _2:= \frac{\mu }{2 \lambda }\) averaged, see References [14, Corollary 23.8], resp. [14, Proposition 4.33]. By [24, Proposition 2.4] their composition \(J_{\mu A}(I-\mu B)\) is \(\alpha \)-averaged with \(\alpha = \frac{\alpha _1 + \alpha _2 -2 \alpha _1 \alpha _2}{1- \alpha _1 \alpha _2}\), which yields \(\alpha = \frac{1}{2(1-\frac{\mu }{4\lambda } )}\). Hence \(J_{\mu A}(I-\mu B) =(1-\alpha )I + \alpha R\) for some nonexpansive operator R, which gives \(M_{A,B,\mu } = \frac{\alpha }{\mu } (I-R)\). Since \(I-R\) is \(\frac{1}{2}\)-cocoercive, see for example [3, Lemma 2.3], we finally obtain that \(M_{A,B,\mu }\) is \(\frac{1}{2}\times \frac{\mu }{\alpha }= \mu \left( 1-\frac{\mu }{4\lambda }\right) \)-cocoercive. \(\square \)

Lemma B.2

Let \(A:{{\mathcal {H}}}\rightarrow 2^{{\mathcal {H}}}\) be a maximally monotone operator and let \(B: {{\mathcal {H}}}\rightarrow {{\mathcal {H}}}\) be a \(\lambda \)-cocoercive operator for some \(\lambda >0\). Given \((z,q)\in \mathrm{gph}(A+B)\) and \(\theta \in [0,1[\), we have for every \(x\in {{\mathcal {H}}}\) and \(\mu >0\),

$$\begin{aligned} \langle M_{A,B,\mu }(x), x-z \rangle\ge & {} \left( \mu -\frac{\mu ^2}{4(1-\theta )\lambda }\right) \Vert M_{A,B,\mu }(x)\Vert ^2+ \theta \lambda \Vert B(x)-B(z)\Vert ^2\nonumber \\&+\langle q, x-\mu M_{A,B,\mu }(x)-z\rangle . \end{aligned}$$
(66)

In particular, we obtain for \(\theta =0\)

$$\begin{aligned} \langle M_{A,B,\mu }(x), x-z \rangle\ge & {} \left( \mu -\frac{\mu ^2}{4\lambda }\right) \Vert M_{A,B,\mu }(x)\Vert ^2\nonumber \\&+ \langle q, x-\mu M_{A,B,\mu }(x)-z\rangle . \end{aligned}$$
(67)

Now assume that \({\mathrm{zer}}(A+B)\ne \emptyset \) and let \(z\in {\mathrm{zer}}(A+B)\). For every \(x\in {{\mathcal {H}}}\), \(\mu >0\) and \(\theta \in [0,1[\), the following inequality holds true

$$\begin{aligned} \langle M_{A,B,\mu }(x), x-z \rangle\ge & {} \left( \mu -\frac{\mu ^2}{4(1-\theta )\lambda }\right) \Vert M_{A,B,\mu }(x)\Vert ^2\nonumber \\&+\, \theta \lambda \Vert B(x)-B(z)\Vert ^2. \end{aligned}$$
(68)

Proof

First observe that for every \(x\in {{\mathcal {H}}}\) and \(\mu >0\), \(M_{A,B,\mu }(x)=A_\mu (x-\mu B(x))+B(x).\) Using the classical property (65) of the Yosida approximation, this leads to

$$\begin{aligned} M_{A,B,\mu }(x)-B(x)\in A\left( x-\mu M_{A,B,\mu }(x)\right) . \end{aligned}$$
(69)

Since \((z,q)\in \mathrm{gph}(A+B)\), we have \(q-B(z)\in A(z)\). The monotonicity of A then yields

$$\begin{aligned} \left\langle M_{A,B,\mu }(x)-B(x)-(q-B(z)), x-\mu M_{A,B,\mu }(x)-z\right\rangle \ge 0. \end{aligned}$$

Hence

$$\begin{aligned} \langle M_{A,B,\mu }(x), x-z\rangle\ge & {} \mu \Vert M_{A,B,\mu }(x)\Vert ^2+\langle B(x)-B(z), x-z\rangle \nonumber \\&-\,\mu \langle B(x)-B(z), M_{A,B,\mu }(x)\rangle \nonumber \\&+\,\langle q, x-\mu M_{A,B,\mu }(x)-z\rangle . \end{aligned}$$
(70)

The \(\lambda \)-cocoercivity of B gives

$$\begin{aligned} \langle B(x)-B(z), x-z\rangle \ge \lambda \Vert B(x)-B(z)\Vert ^2. \end{aligned}$$
(71)

On the other hand, by using Cauchy-Schwarz inequality, we obtain

$$\begin{aligned} \langle B(x)-B(z), M_{A,B,\mu }(x)\rangle\le & {} \Vert B(x)-B(z)\Vert \Vert M_{A,B,\mu }(x)\Vert \nonumber \\\le & {} (1-\theta )\frac{\lambda }{\mu }\Vert B(x)-B(z)\Vert ^2\nonumber \\&+ \frac{\mu }{4(1-\theta )\lambda }\Vert M_{A,B,\mu }(x)\Vert ^2. \end{aligned}$$
(72)

By combining (70), (71) and (72), we immediately find (66). Inequality (67) (resp. (68)) is obtained by taking \(\theta =0\) (resp. \(q=0\)) in (66). \(\square \)

Lemma B.3

Let \(A:{{\mathcal {H}}}\rightarrow 2^{{\mathcal {H}}}\) be a maximally monotone operator, and let \(B: {{\mathcal {H}}}\rightarrow {{\mathcal {H}}}\) be a \(\lambda \)-cocoercive operator for some \(\lambda >0\). Let \((\xi _n)\) be a sequence of \({{\mathcal {H}}}\), and let \((\lambda _n)\) be a sequence of positive numbers. Assume that \(\xi _n\rightharpoonup \overline{x^{}}\) weakly in \({{\mathcal {H}}}\) and that

$$\begin{aligned} \lim _{n\rightarrow +\infty }\Vert M_{A,B,\lambda _{n}}(\xi _n)\Vert =0 \quad \hbox {and}\quad \lim _{n\rightarrow +\infty }\Vert \lambda _{n}M_{A,B,\lambda _{n}}(\xi _n)\Vert =0. \end{aligned}$$
(73)

Then we have \(\overline{x^{}}\in {\mathrm{zer}}(A+B)\).

Proof

By using inclusion (69) with \(x=\xi _n\) and \(\mu =\lambda _n\), we obtain

$$\begin{aligned} M_{A,B,\lambda _n}(\xi _n)-B(\xi _n)\in A(\xi _n-\lambda _n M_{A,B,\lambda _n}(\xi _n)) \end{aligned}$$

and hence

$$\begin{aligned}&M_{A,B,\lambda _{n}}(\xi _n)+B(\xi _n-\lambda _{n} M_{A,B,\lambda _{n}}(\xi _n))-B(\xi _n)\nonumber \\&\quad \in (A+B)\left( \xi _n-\lambda _{n} M_{A,B,\lambda _{n}}(\xi _n)\right) . \end{aligned}$$
(74)

Since the operator B is \(\frac{1}{\lambda }\)-Lipschitz continuous, we have

$$\begin{aligned}&\Vert M_{A,B,\lambda _{n}}(\xi _n)+B(\xi _n-\lambda _{n} M_{A,B,\lambda _{n}}(\xi _n))-B(\xi _n)\Vert \\&\quad \le \Vert M_{A,B,\lambda _{n}}(\xi _n)\Vert +\Vert B(\xi _n-\lambda _{n} M_{A,B,\lambda _{n}}(\xi _n))-B(\xi _n)\Vert \\&\quad \le \Vert M_{A,B,\lambda _{n}}(\xi _n)\Vert +\frac{1}{\lambda }\Vert \lambda _{n}M_{A,B,\lambda _{n}}(\xi _n)\Vert . \end{aligned}$$

We then deduce from (73) that the left member of (74) tends to 0 strongly in \({{\mathcal {H}}}\) as \(n\rightarrow +\infty \). By invoking again (73), we see that \(\xi _n-\lambda _{n} M_{A,B,\lambda _{n}}(\xi _n)\) converges weakly to \(\overline{x^{}}\) as \(n\rightarrow +\infty \). Taking the limit as \(n\rightarrow +\infty \) in (74), we conclude that \(0\in (A+B)(\overline{x^{}})\), due to the graph-closedness of the maximally monotone operator \(A+B\) for the weak-strong topology in \({{\mathcal {H}}}\times {{\mathcal {H}}}\). \(\square \)

We now study the variations of the function \((x,\mu )\mapsto \mu M_{A,B,\mu }(x)\).

Lemma B.4

Let \(A:{{\mathcal {H}}}\rightarrow 2^{{\mathcal {H}}}\) be a maximally monotone operator, and let \(B: {{\mathcal {H}}}\rightarrow {{\mathcal {H}}}\) be a \(\lambda \)-cocoercive operator for some \(\lambda >0\). Assume that \({\mathrm{zer}}(A+B)\ne \emptyset \). Let \(\gamma \), \(\delta \in ]0,2\lambda [\), and x, \(y\in {{\mathcal {H}}}\). Then, for each \(z\in {\mathrm{zer}}(A+B)\), we have

$$\begin{aligned} \Vert \gamma M_{A,B,\gamma }(x)-\delta M_{A,B,\delta }(y)\Vert \le 2\Vert x-y\Vert +2\frac{|\gamma -\delta |}{\gamma }\Vert x-z\Vert . \end{aligned}$$

Proof

The proof follows the lines of Reference [10, Lemma A.4]. By using successively the definition of \(M_{A,B,\gamma }\), the resolvent identity [14, Proposition 23.28 (i)], and the nonexpansive property of the resolvent, we obtain

$$\begin{aligned} \Vert \gamma M_{A,B,\gamma }(x)- & {} \delta M_{A,B,\delta }(y)\Vert \le \Vert x-y\Vert +\Vert J_{\gamma A}(x-\gamma B(x))-J_{\delta A}(y-\delta B(y))\Vert \nonumber \\= & {} \Vert x-y\Vert +\left\| J_{\delta A}\left( \frac{\delta }{\gamma }(x-\gamma B(x))+\left( 1-\frac{\delta }{\gamma }\right) J_{\gamma A}(x-\gamma B(x))\right) \right. \nonumber \\&\left. -J_{\delta A}(y-\delta B(y))\right\| \nonumber \\\le & {} \Vert x-y\Vert +\left\| \frac{\delta }{\gamma }(x-\gamma B(x))\right. \nonumber \\&\left. +\left( 1-\frac{\delta }{\gamma }\right) J_{\gamma A}(x-\gamma B(x)) -(y-\delta B(y))\right\| \nonumber \\= & {} \Vert x-y\Vert +\left\| (x-\delta B(x))-(y-\delta B(y))\right. \nonumber \\&\left. +\left( 1-\frac{\delta }{\gamma }\right) (J_{\gamma A}(x-\gamma B(x))-x)\right\| \nonumber \\\le & {} \Vert x-y\Vert +\Vert (x-\delta B(x))-(y-\delta B(y))\Vert \nonumber \\&+\left| 1-\frac{\delta }{\gamma }\right| \Vert J_{\gamma A}(x-\gamma B(x))-x\Vert . \end{aligned}$$
(75)

Since \(\delta \in ]0, 2\lambda [\), the operator \(I-\delta B\) is \(\frac{\delta }{2\lambda }\)-averaged, see Reference [14, Proposition 4.33]. This guarantees that the operator \(I-\delta B\) is nonexpansive, hence

$$\begin{aligned} \Vert (x-\delta B(x))-(y-\delta B(y))\Vert \le \Vert x-y\Vert . \end{aligned}$$
(76)

On the other hand, observe that for \(z\in {\mathrm{zer}}(A+B)\),

$$\begin{aligned} x-J_{\gamma A}(x-\gamma B(x))=x-J_{\gamma A}(x-\gamma B(x))-(z-J_{\gamma A}(z-\gamma B(z))). \end{aligned}$$

From the triangle inquality combined with the nonexpansive property of the resolvent, we deduce that

$$\begin{aligned} \Vert x-J_{\gamma A}(x-\gamma B(x))\Vert\le & {} \Vert x-z\Vert +\Vert J_{\gamma A}(x-\gamma B(x))-J_{\gamma A}(z-\gamma B(z))\Vert \nonumber \\\le & {} \Vert x-z\Vert +\Vert (x-\gamma B(x))-(z-\gamma B(z))\Vert \nonumber \\\le & {} 2\Vert x-z\Vert \quad \hbox { because }I-\gamma B\hbox { is nonexpansive.} \end{aligned}$$
(77)

By putting together (75), (76) and (77), we conclude that

$$\begin{aligned} \Vert \gamma M_{A,B,\gamma }(x)-\delta M_{A,B,\delta }(y)\Vert \le 2\Vert x-y\Vert +2\left| 1-\frac{\delta }{\gamma }\right| \Vert x-z\Vert . \end{aligned}$$

\(\square \)

Appendix C: Some Auxiliary Results

Lemma C.1

(Attouch-Cabot [6]) Let \((a_k)\), \((\alpha _k)\) and \((w_k)\) be sequences of real numbers satisfying

$$\begin{aligned} a_{k+1}\le \alpha _k a_k+w_k \quad \hbox {for every } k\ge 1. \end{aligned}$$

Assume that \(\alpha _k\ge 0\) for every \(k\ge 1\). Let \((t_i)\) and \((t_{i,k})\) be the sequences respectively defined by (6) and (7).

  1. (i)

    For every \(k\ge 1\), we have

    $$\begin{aligned} \sum _{i=1}^k a_i\le t_{1,k}a_1+\sum _{i=1}^{k-1} t_{i+1,k} w_i. \end{aligned}$$
  2. (ii)

    Under \((K_0)\), assume that \(\sum _{i=1}^{+\infty }t_{i+1}[w_i]_+<~+\infty \). Then the series \(\sum _{i\ge 1}[a_i]_+\) is convergent, and

    $$\begin{aligned} \sum _{i= 1}^{+\infty }[a_i]_+\le t_1 [a_1]_+ +\sum _{i=1}^{+\infty } t_{i+1} [w_i]_+. \end{aligned}$$

The proof is omitted and the reader is referred to Reference [6, Lemma B.1]. It makes use of Reference [6, Lemma 2.4], which corresponds to Lemma 2.1.

The next lemma gives basic properties of the averaging process (58), see Reference [6, Lemma B.2] for the proof.

Lemma C.2

(Attouch-Cabot [6]) Let \(({{\mathcal {X}}},\Vert .\Vert )\) be a Banach space and let \((x_k)\) be a bounded sequence of \({{\mathcal {X}}}\). Given a sequence \((\tau _{i,k})_{i,k\ge 1}\) of nonnegative numbers satisfying (56) and (57), let \(({\widehat{x}}_k)\) be the averaged sequence defined by \({\widehat{x}}_k=\sum _{i=1}^{+\infty }\tau _{i,k}x_i\). Then we have

  1. (i)

    The sequence \(({\widehat{x}}_k)\) is well-defined, bounded and \(\sup _{k\ge 1}\Vert {\widehat{x}}_k\Vert \le \sup _{k\ge 1}\Vert x_k\Vert \).

  2. (ii)

    If \((x_k)\) converges toward \(\overline{x^{}}\in {{\mathcal {X}}}\), then the sequence \(({\widehat{x}}_k)\) is also convergent and \(\lim _{k\rightarrow +\infty }{\widehat{x}}_k=\overline{x^{}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attouch, H., Cabot, A. Convergence of a Relaxed Inertial Forward–Backward Algorithm for Structured Monotone Inclusions. Appl Math Optim 80, 547–598 (2019). https://doi.org/10.1007/s00245-019-09584-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-019-09584-z

Keywords

Mathematics Subject Classification

Navigation