Skip to main content
Log in

On Cross-Diffusion Systems for Two Populations Subject to a Common Congestion Effect

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

In this paper, we investigate the existence of solution for systems of Fokker–Planck equations coupled through a common nonlinear congestion. Two different kinds of congestion are considered: a porous media congestion or soft congestion and the hard congestion given by the constraint \(\rho _1+\rho _2 \leqslant 1\). We show that these systems can be seen as gradient flows in a Wasserstein product space and then we obtain a constructive method to prove the existence of solutions. Therefore it is natural to apply it for numerical purposes and some numerical simulations are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agueh, M.: Existence of solutions to degenerate parabolic equations via the Monge–Kantorovich theory. Adv. Differ. Equ. 10(3), 309–360 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Alexander, D., Kim, I., Yao, Y.: Quasi-static evolution and congested crowd transport. Nonlinearity 27(4), 823–858 (2014)

    Article  MathSciNet  Google Scholar 

  3. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel (2005)

    MATH  Google Scholar 

  4. Bakhta, A., Ehrlacher, V.: Cross-diffusion systems with non-zero flux and moving boundary conditions. November (2016). Preprint

  5. Benamou, J.-D., Brenier, Y., Guittet, K.: Numerical analysis of a multi-phasic mass transport problem. Contemp. Math. 353, 1–18 (2004)

    Article  MathSciNet  Google Scholar 

  6. Benamou, J.-D., Carlier, G., Laborde, M.: An augmented Lagrangian approach to Wasserstein gradient flows and applications. Gradient flows: from theory to application. In: ESAIM Proceedings and Surveys, vol 54, pp. 1–17. EDP Sci, Les Ulis (2016)

    Article  MathSciNet  Google Scholar 

  7. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44(4), 375–417 (1991)

    Article  MathSciNet  Google Scholar 

  8. Buttazzo, G., Santambrogio, F.: A model for the optimal planning of an urban area. SIAM J. Math. Anal. 37(2), 514–530 (2005)

    Article  MathSciNet  Google Scholar 

  9. Cancès, C., Gallouët, T.O., Monsaingeon, L.: Incompressible immiscible multiphase flows in porous media: a variational approach. Anal. PDE 10(8), 1845–1876 (2017)

    Article  MathSciNet  Google Scholar 

  10. Carlier, G., Laborde, M.: A splitting method for nonlinear diffusions with nonlocal, nonpotential drifts. Nonlinear Anal.: Theory Methods Appl. 150, 1–18 (2017)

    Article  MathSciNet  Google Scholar 

  11. Carlier, G., Santambrogio, F.: A variational model for urban planning with traffic congestion. ESAIM Control Optim. Calc. Var. 11(4), 595–613 (2005)

    Article  MathSciNet  Google Scholar 

  12. Colombo, R.M., Garavello, M., Lécureux-Mercier, M.: A class of nonlocal models for pedestrian traffic. Math. Models Methods Appl. Sci. 22(4):1150023, 34 (2012)

    Article  MathSciNet  Google Scholar 

  13. Colombo, R.M., Lécureux-Mercier, M.: Nonlocal crowd dynamics models for several populations. Acta Math. Sci. Ser. B Engl. Ed. 32(1), 177–196 (2012)

    Article  MathSciNet  Google Scholar 

  14. Crippa, G., Lécureux-Mercier, M.: Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow. NoDEA Nonlinear Differ. Equ. Appl. 20(3), 523–537 (2013)

    Article  MathSciNet  Google Scholar 

  15. Dambrine, J., Meunier, N., Maury, B., Roudneff-Chupin, A.: A congestion model for cell migration. Commun. Pure Appl. Anal. 11(1), 243–260 (2012)

    Article  MathSciNet  Google Scholar 

  16. Daneri, S., Savaré, G.: Eulerian calculus for the displacement convexity in the Wasserstein distance. SIAM J. Math. Anal. 40(3), 1104–1122 (2008)

    Article  MathSciNet  Google Scholar 

  17. De Figueiredo, D.G.: Lectures on the Ekeland Variational Principle with Applications and Detours. Springer, Berlin (1989)

    MATH  Google Scholar 

  18. Desvillettes, L., Lepoutre, T., Moussa, A., Trescases, A.: On the entropic structure of reaction-cross diffusion systems. Commun. Partial Differ. Equ. 40(9), 1705–1747 (2015)

    Article  MathSciNet  Google Scholar 

  19. Di Francesco, M., Fagioli, S.: Measure solutions for non-local interaction PDEs with two species. Nonlinearity 26(10), 2777–2808 (2013)

    Article  MathSciNet  Google Scholar 

  20. Di Francesco, M., Matthes, D.: Curves of steepest descent are entropy solutions for a class of degenerate convection-diffusion equations. Calc. Var. Partial Differ. Equ. 50(1–2), 199–230 (2014)

    Article  MathSciNet  Google Scholar 

  21. Di Marino, S., Mészáros, A.R.: Uniqueness issues for evolution equations with density constraints. Math. Models Methods Appl. Sci. 26(9), 1761–1783 (2016)

    Article  MathSciNet  Google Scholar 

  22. Gallouët, T.O., Laborde, M., Monsaingeon, L.: An unbalanced optimal transport splitting scheme for general advection-reaction-diffusion problems. ESAIM Control. Optim. Calc. Var. (2018, to appear)

  23. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

    Article  MathSciNet  Google Scholar 

  24. Jüngel, A.: The boundedness-by-entropy method for cross-diffusion systems. Nonlinearity 28(6), 1963–2001 (2015)

    Article  MathSciNet  Google Scholar 

  25. Jüngel, A., Zamponi, N.: A cross-diffusion system derived from a Fokker–Planck equation with partial averaging. Z. Angew. Math. Phys. 68(1), Art. 28, 15 (2017)

  26. Kim, I., Mészáros, A.R.: On nonlinear cross-diffusion systems: an optimal transport approach. Calc. Var. Partial Differ. Equ. 57(3), 79 (2018)

    Article  MathSciNet  Google Scholar 

  27. Kondratyev, S., Monsaingeon, L., Vorotnikov, D.: A fitness-driven cross-diffusion system from population dynamics as a gradient flow. J. Differ. Equ. 261(5), 2784–2808 (2016)

    Article  MathSciNet  Google Scholar 

  28. Laborde, M.: Interacting particles systems, Wasserstein gradient flow approach. PhD thesis, Paris-Dauphine University (2016)

  29. Laborde, M.: On some nonlinear evolution systems which are perturbations of Wasserstein gradient flows. Topological Optimization and Optimal Transport. Radon Series on Computational and Applied Mathematics, vol. 17, pp. 304–332. De Gruyter, Berlin (2017)

    Google Scholar 

  30. Laurençot, P., Matioc, B.-V.: A gradient flow approach to a thin film approximation of the Muskat problem. Calc. Var. Partial Differ. Equ. 47(1–2), 319–341 (2013)

    Article  MathSciNet  Google Scholar 

  31. Lepoutre, T., Pierre, M., Rolland, G.: Global well-posedness of a conservative relaxed cross diffusion system. SIAM J. Math. Anal. 44(3), 1674–1693 (2012)

    Article  MathSciNet  Google Scholar 

  32. Matthes, D., McCann, R.J., Savaré, G.: A family of nonlinear fourth order equations of gradient flow type. Commun. Partial Differ. Equ. 34(10–12), 1352–1397 (2009)

    Article  MathSciNet  Google Scholar 

  33. Maury, B., Roudneff-Chupin, A., Santambrogio, F.: A macroscopic crowd motion model of gradient flow type. Math. Models Methods Appl. Sci. 20(10), 1787–1821 (2010)

    Article  MathSciNet  Google Scholar 

  34. Maury, B., Roudneff-Chupin, A., Santambrogio, F.: Congestion-driven dendritic growth. Discret. Contin. Dyn. Syst. 34(4), 1575–1604 (2014)

    Article  MathSciNet  Google Scholar 

  35. Maury, B., Roudneff-Chupin, A., Santambrogio, F., Venel, J.: Handling congestion in crowd motion modeling. Netw. Heterog. Media 6(3), 485–519 (2011)

    Article  MathSciNet  Google Scholar 

  36. Maury, B., Venel, J.: Handling of Contacts in Crowd Motion Simulations, pp. 171–180. Springer, Berlin (2009)

    MATH  Google Scholar 

  37. McCann, R.J.: A convexity principle for interacting gases. Adv. Math. 128(1), 153–179 (1997)

    Article  MathSciNet  Google Scholar 

  38. Mészáros, A.R., Santambrogio, F.: Advection-diffusion equations with density constraints. Anal. PDE 9(3), 615–644 (2016)

    Article  MathSciNet  Google Scholar 

  39. Otto, F.: Double Degenerate Diffusion Equations as Steepest Descent. Bonn University, Preprint (1996)

  40. Otto, F.: \(L^1\)-contraction and uniqueness for quasilinear elliptic-parabolic equations. J. Differ. Equ. 131(1), 20–38 (1996)

    Article  MathSciNet  Google Scholar 

  41. Petrelli, L., Tudorascu, A.: Variational principle for general diffusion problems. Appl. Math. Optim. 50(3), 229–257 (2004)

    Article  MathSciNet  Google Scholar 

  42. Rossi, R., Savaré, G.: Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2(2), 395–431 (2003)

    MathSciNet  MATH  Google Scholar 

  43. Santambrogio, F.: Gradient flows in Wasserstein spaces and applications to crowd movement. In: Seminaire: Equations aux Dérivées Partielles. 2009–2010, Sémin. Équ. Dériv. Partielles, pages Exp. No. XXVII, 16. École Polytech., Palaiseau (2012)

  44. Santambrogio, F.: Optimal Transport for Applied Mathematicians. Progress in Nonlinear Differential Equations and Their Applications, vol. 87. Birkasauser, Basel (2015)

    MATH  Google Scholar 

  45. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence, RI (2003)

    MATH  Google Scholar 

  46. Villani, C.: Optimal Transport. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (2009)

    Book  Google Scholar 

Download references

Acknowledgements

The author gratefully thanks G. Carlier for suggesting this problem and for fruitful discussions about this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Laborde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laborde, M. On Cross-Diffusion Systems for Two Populations Subject to a Common Congestion Effect. Appl Math Optim 81, 989–1020 (2020). https://doi.org/10.1007/s00245-018-9527-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-018-9527-4

Keywords

Mathematics Subject Classification

Navigation