Skip to main content
Log in

The Convergence Problem in Mean Field Games with Local Coupling

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

The paper studies the convergence, as N tends to infinity, of a system of N coupled Hamilton–Jacobi equations, the Nash system, when the coupling between the players becomes increasingly singular. The limit equation turns out to be a mean field game system with a local coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buckdahn, R., Li, J., Peng, S., Rainer, C.: Mean-field stochastic differential equations and associated PDEs. (2014). arXiv preprint. arXiv: 1407.1215

  2. Cardaliaguet, P., Delarue, F., Lasry, J.-M., Lions. P.-L.: The master equation and the convergence problem in mean field games (2015). arXiv preprint. arXiv: 1509.02505

  3. Carmona, R., Delarue, F.: Probabilistic theory of mean field games (expected) (2016)

  4. Carmona, R., Delarue, F.: Probabilistic analysis of mean-field games. SIAM J. Control. Optim. 51(4), 2705–2734 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chassagneux, J.-F., Crisan, D., Delarue, F.: Classical solutions to the master equation for large population equilibria (2014). arXiv preprint. arXiv: 1411.3009

  6. Feleqi, E.: The derivation of ergodic mean field game equations for several populations of players. Dyn. Games Appl. 3(4), 523–536 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fischer, M.: On the connection between symmetric \(n\)-player games and mean field games (2014). arXiv preprint. arXiv: 1405.1345

  8. Fournier, N., Guillin, A.: On the rate of convergence in wasserstein distance of the empirical measure. Probab. Theory Relat. Fields 162(3–4), 707–738 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gangbo, W., Świech, A.: Existence of a solution to an equation arising from the theory of mean field games. J. Differ. Equ. 259(11), 6573–6643 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gomes, D., Pimentel, E., Voskanyan, V.: Regularity Theory for Mean-Field Game Systems. Springer Briefs in Mathematics. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  11. Huang, M., Caines, P.E., Malhamé, R.P.: An invariance principle in large population stochastic dynamic games. J. Syst. Sci. Complex. 20(2), 162–172 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, M., Caines, P.E., Malhamé, R.P.: Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized \(\varepsilon \)-nash equilibria. IEEE Trans. Autom. Control 52(9), 1560–1571 (2007)

    Article  MathSciNet  Google Scholar 

  13. Huang, M., Caines, P.E., Malhamé, R.P.: The nash certainty equivalence principle and Mckean-Vlasov systems: an invariance principle and entry adaptation. In: 2007 46th IEEE Conference on Decision and Control, pp. 121–126 (2007)

  14. Huang, Minyi, Caines, P.E., Malhamé, R.P.: The NCE (mean field) principle with locality dependent cost interactions. IEEE Trans. Autom. Control 55(12), 2799–2805 (2010)

    Article  MathSciNet  Google Scholar 

  15. Huang, M., Malhamé, R.P., Caines, P.E., et al.: Large population stochastic dynamic games: closed-loop Mckean-Vlasov systems and the nash certainty equivalence principle. Commun. Inf. Syst. 6(3), 221–252 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Lacker, D.: A general characterization of the mean field limit for stochastic differential games. Probab. Theory Relat. Fields 165(3–4), 581–648 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ladyzhenskaia, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and Quasi-linear Equations of Parabolic Type, vol. 23. American Mathematical Society, Providence (1988)

    Google Scholar 

  18. Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. i–le cas stationnaire. Comptes Rendus Mathématique 343(9), 619–625 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. ii–horizon fini et contrôle optimal. Comptes Rendus Mathématique 343(10), 679–684 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lions, P.-L.: Cours au collège de france. 2006–2012

  22. Porretta, A.: Weak solutions to Fokker-Planck equations and mean field games. Arch. Ration. Mech. Anal. 216(1), 1–62 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author was partially supported by the ANR (Agence Nationale de la Recherche) project ANR-16-CE40-0015-01. The author wishes to thank the anonymous referee for the very careful reading and for finding a serious gap in the previous version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Cardaliaguet.

Appendix

Appendix

In the appendix, we state an estimate for equations of the form:

$$\begin{aligned} \left\{ \begin{array}{l} \displaystyle \partial _t w - \Delta w + V(t,x)\cdot Dw =f \qquad \mathrm{in}\; [0,T]\times \mathbb {T}^d,\\ \displaystyle w(0,x)=w_0(x)\qquad \mathrm{in}\; \mathbb {T}^d, \end{array}\right. \end{aligned}$$
(53)

where V is a fixed bounded vector field.

Proposition 5.1

If w is a solution to the above equation with \(w_0\in C^{1+\alpha }\), then

$$\begin{aligned} \sup _{t\in [0,T]}\Vert w(t)\Vert _{1+\alpha }\le C\left[ \Vert w_0\Vert _{1+\alpha }+\Vert f\Vert _\infty \right] , \end{aligned}$$

where C depends on \(\Vert V\Vert _\infty \), T, \(\alpha \) and d only.

This kind of estimate is standard in the literature: for instance Theorem IV.9.1 of [17] (and its Corollary) states that Dw is bounded in \(C^{\beta /2,\beta }\) for any \(\beta \in (0,1)\). However the bound might depend on the vector field V and not only on its norm. We only check this is not the case.

Proof

Let us first check that the result holds for an homogenous initial datum. More precisely, we prove in a first step that, if w solve (53) with \(w(0,\cdot )=0\), then \(\Vert Dw\Vert _\infty \le C \Vert f\Vert _\infty \), where the constant C depends on \(\Vert V\Vert _\infty \), T and d only. For this we argue by contradiction and assume for a while that there exists \(V_n\) and \(f_n\), bounded in \(L^\infty \), and \(w_n\) such that

$$\begin{aligned} \left\{ \begin{array}{l} \displaystyle \partial _t w_n - \Delta w_n + V_n\cdot Dw_n =f_n \qquad \mathrm{in}\; [0,T]\times \mathbb {T}^d\\ \displaystyle w_n(0,x)=0\qquad \mathrm{in}\; \mathbb {T}^d. \end{array}\right. \end{aligned}$$

with \(k_n:=\Vert Dw_n\Vert _\infty \rightarrow +\infty \). We set \(\tilde{w}_n:= w_n/k_n\), \(\tilde{f}_n:= f_n/k_n\). Then \(\tilde{w}_n\) solves the heat equation with a right-hand side \(\tilde{f}_n-V_n\cdot D\tilde{w}_n\) which is bounded in \(L^\infty \). By standard estimates on the heat potential (see (3.2) of Chapter 3 in [17]), \(\partial _t \tilde{w}_n\) and \(D^2\tilde{w}_n\) are bounded in \(L^p\) for any p independently of n. Then a Sobolev type inequality (Lemma II.3.3 in [17]) implies that \(D\tilde{w}_n\) is bounded in \(C^{\beta /2,\beta }\) independently of n for any \(\beta \in (0,1)\). On the other hand, \((\tilde{f}_n)\) tends to 0 in \(L^2\) and, by standard energy estimates, \((D\tilde{w}_n)\) tends to 0 in \(L^2\). This is in contradiction with the fact that \(\Vert D\tilde{w}_n\Vert _\infty =1\) and that \(D\tilde{w}_n\) is bounded in \(C^{\beta /2,\beta }\). So we have proved that there exists a constant C, depending on \(\Vert V\Vert _\infty \), d and T only, such that the solution to (53) with \(w(0,\cdot )=0\) satisfies \(\Vert Dw\Vert _\infty \le C\Vert f\Vert _\infty \). Using the same argument on the the heat potential as above yields to

$$\begin{aligned} \Vert Dw\Vert _{C^{\beta /2,\beta }}\le C_\beta \Vert f-V\cdot Dw\Vert _\infty \le C_\beta \Vert f\Vert _\infty , \end{aligned}$$

where \(C_\beta \) depends on \(\Vert V\Vert \), d, T and \(\beta \) only.

We now remove the assumption that \(w_0=0\). We rewrite w as the sum \(w=w_1+w_2\) where \(w_1\) solves the heat equation with initial condition \(w_0\) and \(w_2\) solves equation (53) with right-hand side \(f-V\cdot Dw_1\) and initial condition \(w_2(0,\cdot )=0\). By maximum principle, we have

$$\begin{aligned} \sup _{t\in [0,T]} \Vert Dw_1(t)\Vert _{\alpha }\le C\Vert Dw_0\Vert _{\alpha }. \end{aligned}$$

By the first step of the proof, we also have, for any \(\beta \in (0,1)\),

$$\begin{aligned} \Vert Dw_2\Vert _{C^{\beta /2,\beta }}\le C_\beta \Vert f-V\cdot Dw_1\Vert _\infty \le C_\beta (\Vert f\Vert _\infty + \Vert Dw_0\Vert _{\alpha }). \end{aligned}$$

Choosing \(\beta =\alpha \) then gives the result. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardaliaguet, P. The Convergence Problem in Mean Field Games with Local Coupling. Appl Math Optim 76, 177–215 (2017). https://doi.org/10.1007/s00245-017-9434-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-017-9434-0

Keywords

Navigation