Skip to main content
Log in

Contraction Options and Optimal Multiple-Stopping in Spectrally Negative Lévy Models

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

This paper studies the optimal multiple-stopping problem arising in the context of the timing option to withdraw from a project in stages. The profits are driven by a general spectrally negative Lévy process. This allows the model to incorporate sudden declines of the project values, generalizing greatly the classical geometric Brownian motion model. We solve the one-stage case as well as the extension to the multiple-stage case. The optimal stopping times are of threshold-type and the value function admits an expression in terms of the scale function. A series of numerical experiments are conducted to verify the optimality and to evaluate the efficiency of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alili, L., Kyprianou, A.E.: Some remarks on first passage of Lévy processes, the American put and smooth pasting. Ann. Appl. Probab. 15, 2062–2080 (2004)

    Article  MathSciNet  Google Scholar 

  2. Asmussen, S., Avram, F., Pistorius, M.R.: Russian and American put options under exponential phase-type Lévy models. Stochastic Process. Appl. 109(1), 79–111 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Asmussen, S., Madan, D., Pistorius, M.R.: Pricing equity default swaps under an approximation to the CGMY Lévy model. J. Comput. Financ. 11(2), 79–93 (2007)

    Google Scholar 

  4. Avram, F., Kyprianou, A.E., Pistorius, M.R.: Exit problems for spectrally negative Lévy processes and applications to (Canadized) Russion options. Ann. Appl. Probab. 14, 215–235 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Avram, F., Palmowski, Z., Pistorius, M.R.: On the optimal dividend problem for a spectrally negative Lévy process. Ann. Appl. Probab. 17(1), 156–180 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baurdoux, E., Kyprianou, A.E.: The McKean stochastic game driven by a spectrally negative Lévy process. Electron. J. Probab. 13(8), 173–197 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Baurdoux, E., Kyprianou, A.E.: The Shepp–Shiryaev stochastic game driven by a spectrally negative Lévy process. Theory Probab. Appl. 53, 481–499 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bertoin, J.: Exponential decay and ergodicity of completely asymmetric Lévy processes in a finite interval. Ann. Appl. Probab. 7(1), 156–169 (1997)

    Article  MathSciNet  Google Scholar 

  9. Boyarchenko, S., Levendorskiĭ, S.Z.: General option exercise rules, with applications to embedded options and monopolistic expansion. Contrib. Theor. Econ. 6, 1–51 (2006)

    Article  MathSciNet  Google Scholar 

  10. Boyarchenko, S., Levendorskiĭ, S.: Irreversible Decisions Under Uncertainty. Studies in Economic Theory, vol. 27. Springer, Berlin (2007)

    MATH  Google Scholar 

  11. Carmona, R., Dayanik, S.: Optimal multiple stopping of linear diffusions. Math. Oper. Res. 33(2), 446–460 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carmona, R., Touzi, N.: Optimal multiple stopping and valuation of swing options. Math. Finance 18(2), 239–268 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chan, T., Kyprianou, A.E., Savov, M.: Smoothness of scale functions for spectrally negative Lévy processes. Probab. Theory Relat. Fields 150, 691–708 (2011)

  14. Deaton, A., Laroque, G.: On the behaviour of commodity prices. Rev. Econ. Stud. 59, 1–23 (1992)

    Article  MATH  Google Scholar 

  15. Dixit, A., Pindyck, R.: Investment Under Uncertainty. Princeton University Press, Princeton (1996)

    Google Scholar 

  16. Egami, M., Yamazaki, K.: Precautional measures for credit risk management in jump models. Stochastics 85(1), 111–143 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Egami, M., Yamazaki, K.: On the continuous and smooth fit principle for optimal stopping problems in spectrally negative Lévy models. Adv. Appl. Probab. 46(1), 139–167 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Egami, M., Yamazaki, K.: Phase-type fitting of scale functions for spectrally negative Lévy processes. J. Comput. Appl. Math. 264, 1–22 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Egami, M., Leung, T., Yamazaki, K.: Default swap games driven by spectrally negative Lévy processes. Stochastic Process. Appl. 123(2), 347–384 (2013)

  20. Feldmann, A., Whitt, W.: Fitting mixtures of exponentials to long-tail distributions to analyze network performance models. Perform. Evaluation 31, 245–279 (1998)

    Article  Google Scholar 

  21. Hernández-Hernández,, D., Yamazaki, K.: Games of singular control and stopping driven by spectrally one-sided Lévy processes. Stochastic Process. Appl. (forthcoming)

  22. Kuznetsov, A., Kyprianou, A.E., Pardo, J.C.: Meromorphic Lévy processes and their fluctuation identities. Ann. Appl. Probab. 22, 1101–1135 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kuznetsov, A., Kyprianou, A.E., Rivero, V.: The theory of scale functions for spectrally negative Lévy processes. Springer Lecture Notes in Mathematics 2061, 97–186 (2013)

  24. Kyprianou, A.E.: Introductory lectures on fluctuations of Lévy processes with applications. Universitext. Springer-Verlag, Berlin (2006)

    MATH  Google Scholar 

  25. Kyprianou, A.E., Surya, B.A.: Principles of smooth and continuous fit in the determination of endogenous bankruptcy levels. Finance Stoch. 11(1), 131–152 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Leland, H.E.: Corporate debt value, bond covenants, and optimal capital structure. J. Finance 49(4), 1213–1252 (1994)

    Article  Google Scholar 

  27. Leland, H.E., Toft, K.B.: Optimal capital structure, endogenous bankruptcy, and the term structure of credit spreads. J. Finance 51(3), 987–1019 (1996)

    Article  Google Scholar 

  28. Leung, T., Yamazaki, K.: American step-up and step-down default swaps under Lévy models. Quant. Finance 13(1), 137–157 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mordecki, E.: Optimal stopping and perpetual options for Lévy processes. Finance Stoch. 6, 473–493 (2002)

    Article  MathSciNet  Google Scholar 

  30. Øksendal, B., Sulem, A.: Applied stochastic control of jump diffusions. Springer, New York (2005)

    Google Scholar 

  31. Peskir, G., Shiryaev, A.N.: Optimal stopping and free-boundary problems (Lectures in Mathematics, ETH Zürich). Birkhauser, Basel (2006)

    MATH  Google Scholar 

  32. Protter, P.: Stochastic integration and differential equations. Springer, New York (2005)

    Book  Google Scholar 

  33. Surya, B.A.: Evaluating scale functions of spectrally negative Lévy processes. J. Appl. Probab. 45(1), 135–149 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yamazaki, K.: Inventory control for spectrally positive Lévy demand processes. arXiv:1303.5163 (2013)

  35. Yang, S.-R., Brorsen, B.W.: Nonlinear dynamics of daily cash prices. Am. J. Agr. Econ. 74(3), 706–715 (1992)

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks the anonymous referee for his/her thorough reviews and insightful comments that help improve the presentation of the paper. K. Yamazaki is in part supported by MEXT KAKENHI grant numbers 22710143 and 26800092, JSPS KAKENHI Grant Number 23310103, the Inamori foundation research grant, and the Kansai University subsidy for supporting young scholars 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazutoshi Yamazaki.

Appendix: Proofs

Appendix: Proofs

1.1 Proof of Lemma 2.1

Let \(g_1(x) := -bx\), \(x \in \mathbb {R}\). We have

$$\begin{aligned} \rho _{g_1,A}^{(r)}&= -b \int _{(0,\infty )}\Pi (\mathrm{d}u) \int _0^{u} e^{-\Phi _r z} (z-u) \mathrm{d}z = -\frac{b}{\Phi _r^2}\int _{(0,\infty )} \Pi (\mathrm{d}u) (1- e^{-\Phi _r u} - \Phi _r u), \end{aligned}$$

and hence

$$\begin{aligned} \Lambda (A; 0, g_1)&:= -\frac{r}{\Phi _r} g_1(A) - \frac{\sigma ^2}{2} g_1'(A) + \rho _{g_1,A}^{(r)}\\&= b \Big [ \frac{r}{\Phi _r} A + \frac{\sigma ^2}{2} - \frac{1}{\Phi _r^2} \int _{(0,\infty )}\Pi (\mathrm{d}u) (1- e^{-\Phi _r u} - \Phi _r u) \Big ] \\&= \frac{b}{\Phi _r^2}\Big [ c \Phi _r +\frac{\sigma ^2}{2} \Phi _r^2 +\int _{( 0,\infty )}(e^{- \Phi _r u}-1+ \Phi _r u 1_{\{0 <u<1\}})\,\Pi (\mathrm{d}u) \Big ] \\&\quad - \frac{b}{\Phi _r} \Big [ c - \int _{[1,\infty )} u \Pi (\mathrm{d}u) - r A \Big ] \\&= b \Big [ \frac{r}{\Phi _r^2}- \frac{\psi '(0+) -r A }{\Phi _r} \Big ]. \end{aligned}$$

Let \(g_2(x) = -\sum _{i=1}^N c_i e^{a_i x}\), \(x \in \mathbb {R}\). Then,

$$\begin{aligned} \rho _{g_2,A}^{(r)} = - \sum _{i=1}^N c_i e^{a_i A} \int _{(0,\infty )} \Pi (\mathrm{d}u) \int _0^u e^{-\Phi _r z} (e^{a_i(z-u)} - 1) \mathrm{d}z. \end{aligned}$$
(6.1)

(Case 1) First suppose \(a_i \ne \Phi _r\) for all \(1 \le i \le N\). Simple algebra gives

$$\begin{aligned} \Lambda (A)= -\frac{r}{\Phi _r}K + b \Big ( \frac{r}{\Phi _r^2}+ \frac{r A - \psi '(0+)}{\Phi _r} \Big ) + \sum _{i=1}^N c_i e^{a_i A} \frac{M_r^{(a_i)}}{\Phi _r} + \Psi _f(A) \end{aligned}$$
(6.2)

where

$$\begin{aligned} M_r^{(a)}&:= r + \frac{a \sigma ^2}{2} \Phi _r+ \int _{(0,\infty )} \Pi (\mathrm{d}u) \Big [ (1 - e^{-\Phi _ru})\\&\qquad - e^{-a u} (1 - e^{-(\Phi _r-a) u}) \frac{\Phi _r}{\Phi _r-a}\Big ], \quad a \in \mathbb {R}\backslash \{\Phi _r \}. \end{aligned}$$

By the definition of \(\psi \) and \(\Phi _r\), we rewrite \(M_r^{(a)}\) as

$$\begin{aligned}&r + \frac{a \sigma ^2}{2} \Phi _r+ \int _{(0,\infty )} \Pi (\mathrm{d}u) \left[ (1 - e^{-\Phi _ru} - \Phi _ru 1_{\{ 0 < u < 1 \}})\right. \\&\qquad \left. - e^{-au} (1 - e^{-(\Phi _r-a) u}) \frac{\Phi _r}{\Phi _r-a} + \Phi _ru 1_{\{ 0 < u < 1\}}\right] \\&= \Big ( c + a \sigma ^2 - \int _{(0,1)} u (e^{-a u}-1) \Pi (\mathrm{d}u) \Big ) \Phi _r+ \frac{\sigma ^2}{2} \Phi _r(\Phi _r- a ) \\&\qquad - \frac{\Phi _r}{\Phi _r-a} \int _{(0,\infty )} \Pi (\mathrm{d}u) e^{-a u} \left( 1 - e^{-(\Phi _r-a) u} - (\Phi _r-a) u 1_{\{0 < u <1 \}} \right) \\&= \frac{\Phi _r}{\Phi _r- a} \psi _a(\Phi _r-a), \end{aligned}$$

where the last equality holds by (2.6). On the other hand, \(\psi _a(\Phi _r-a) = \psi (\Phi _r) - \psi (a) = r - \psi (a)\); see page 213 of [24]. Hence

$$\begin{aligned} \Phi _r\varpi _r(a) = \frac{\Phi _r}{\Phi _r- a} (r- \psi (a))&= \frac{\Phi _r}{\Phi _r- a} \psi _a(\Phi _r-a), \end{aligned}$$

which shows for the case \(a_i \ne \Phi _r\) for all \(1 \le i \le N\).

(Case 2) Suppose \(a_j = \Phi _r\) for some \(1 \le j \le N\) (with \(a_i \ne a_j\) for \(i \ne j\) by assumption). Take a sequence of (strictly) increasing sequence \(a_j^{(m)} \uparrow a_j = \Phi _r\). Then a modification of (2.18) with \(a_j\) replaced with \(a_j^{(m)}\) is by Case 1

$$\begin{aligned} \Lambda ^{(m)}(A)&= -\frac{r}{\Phi _r}K + b \Big ( \frac{r}{\Phi _r^2}+ \frac{r A - \psi '(0+)}{\Phi _r} \Big )\\&\qquad + \sum _{1 \le i \le N, i \ne j} c_i e^{a_i A} \varpi _r(a_i) + c_j e^{a_j^{(m)} A} \varpi _r(a_j^{(m)}) + \Psi _f(A). \end{aligned}$$

By the definition of \(\varpi _r\) as in (2.23), we have

$$\begin{aligned} \lim _{m \uparrow \infty }\Lambda ^{(m)}(A)= -\frac{r}{\Phi _r}K + b \Big ( \frac{r}{\Phi _r^2}+ \frac{r A - \psi '(0+)}{\Phi _r} \Big ) + \sum _{i=1}^N c_i e^{a_i A} \varpi _r(a_i) + \Psi _f(A). \end{aligned}$$

On the other hand, in view of (6.1), its integrand is monotone in \(a\). Hence by the monotone convergence theorem and because \(g\) and \(g'\) are continuous in \(a\), \(\lim _{m \uparrow \infty }\Lambda ^{(m)}(A) = \Lambda (A)\), and the proof is complete for Case 2.

1.2 Proof of Lemma 2.2

Because \(g(x)\) is infinitely differentiable, the results are clear for \(x \in (-\infty , A^*)\). Hence we show for \(x \in (A^*, \infty )\). Because \(W^{(r)}(y)\) is differentiable on \(y > 0\) as in Remark 2.1(1), \(K Z^{(r)} (x-A^*) - b \Big [ \overline{Z}^{(r)}(x-A^*) + \big (A^*- \frac{\psi '(0+)}{r} \big )Z^{(r)}(x-A^*) + \frac{\psi '(0+)}{r} \Big ] - \sum _{i=1}^N c_i e^{a_i x} Z_{a_i}^{(r - \psi (a_i))} (x-A^*)\) is twice differentiable.

Regarding \(\Theta _f(x;A^*)\), integration by parts thanks to the continuity of \(f\) gives (with \(\overline{W}^{(r)}(x) := \int _0^x W^{(r)}(y) \mathrm{d}y\), \(x \in \mathbb {R}\))

$$\begin{aligned} \Theta _f(x;A^*) = f(A^*) \overline{W}^{(r)} (x-A^*) + \int _{A^*}^x f'(y) \overline{W}^{(r)}(x-y) \mathrm{d}y. \end{aligned}$$

It is differentiable with

$$\begin{aligned} \Theta _f'(x;A^*) = f(A^*) {W^{(r)}(x-A^*)} + \int _{A^*}^x f'(y) {W^{(r)}(x-y)} \mathrm{d}y. \end{aligned}$$

When \(X\) is of unbounded variation, because \(W^{(r)}(0) = 0\) as in Remark 2.1(2), \(\Theta _f(x;A^*)\) is twice-differentiable with

$$\begin{aligned} \Theta _f''(x;A^*) = f(A^*) {W^{(r)'}(x-A^*)}+ \int _{A^*}^x f'(y) {W^{(r)'}(x-y)} \mathrm{d}y. \end{aligned}$$

1.3 Proof of Proposition 2.1

(i) Suppose \(-\infty < A^* \le \infty \). By directly using the results of [17] (Lemma 3.7 and Proposition 3.4), we obtain

$$\begin{aligned}&(\mathcal {L}-r) u_{A^*}(x) + f(x) = 0, \quad x \in (A^*, \infty ), \nonumber \\&u_{A^*}(x) \ge g(x), \quad x \in \mathbb {R}, \end{aligned}$$
(6.3)

where \(\mathcal {L}\) is the infinitesimal generator of \(X\) applied to a sufficiently smooth function \(h\), i.e.,

$$\begin{aligned} \mathcal {L} h(x) = c h'(x) + \frac{1}{2} \sigma ^2 h''(x) + \int _{(0,\infty )} [h(x-z) - h(x) + h'(x) z 1_{\{0 < z < 1\}}] \Pi (\mathrm{d}z). \end{aligned}$$

Lemma 5.1

If \(-\infty < A^* \le \infty \), we have \((\mathcal {L}-r) u_{A^*}(x) + f(x) \le 0\) on \(x \in (-\infty , A^*)\).

Proof

Fix \(-\infty < A^* < \infty \). First, if we define \(g_l(x) := x\), \(x \in \mathbb {R}\),

$$\begin{aligned} (\mathcal {L}-r) g_l(x) = \psi '(0+)- rx. \end{aligned}$$

By the definition of \(\psi \), if we define \(g_e (x) := e^{ax}\), \(x \in \mathbb {R}\),

$$\begin{aligned} \mathcal {L} g_e(x) = e^{ax} \Big [ ca + \frac{1}{2} \sigma ^2 a^2+ \int _{(0,\infty )} (e^{-az} - 1 + a z 1_{\{0 < z < 1\}} ) \Pi (\mathrm{d}z) \Big ] = e^{ax} \psi (a) \end{aligned}$$

for any \(a > 0\) and hence we have

$$\begin{aligned} (\mathcal {L}-r) g(x) + f(x) = - rK -b(\psi '(0+) -rx) + \sum _{i=1}^N c_i e^{a_i x} (r - \psi (a_i)) + f(x). \end{aligned}$$
(6.4)

By how \(A^*\) is chosen,

$$\begin{aligned} 0 = -r K + b \Big (\frac{r}{\Phi _r}- {(\psi '(0+) -r A^*)}\Big ) + \sum _{i=1}^N c_i e^{a_i A^*} {\Phi _r} \varpi _r(a_i) + \Phi _r\Psi _f(A^*). \end{aligned}$$
(6.5)

Because \(f\) is increasing and \(x < A^*\)

$$\begin{aligned} \Phi _r\Psi _f(A^*) \ge \Phi _r\int _0^\infty e^{-\Phi _ry} f(x) \mathrm{d}y = f(x). \end{aligned}$$
(6.6)

By \(A^* \ge x\) and \(\Phi _r > 0\),

$$\begin{aligned} b \Big (\frac{r}{\Phi _r}- {(\psi '(0+) -r A^*)}\Big ) \ge -b(\psi '(0+) -rx). \end{aligned}$$

It is also easy to see that

$$\begin{aligned} e^{a_i A^*}{\Phi _r} \varpi _r(a_i) \ge e^{a_i x} (r - \psi (a_i)), \quad 1 \le i \le N. \end{aligned}$$
(6.7)

Indeed, for the case \(r - \psi (a_i) > 0\), we must have \(\Phi _r-a_i > 0\) and hence (6.7) holds by \(A^* > x\); for the case \(r - \psi (a_i) < 0\), the left-hand side is positive while the right-hand side is negative in (6.7); for the case \(r - \psi (a_i) = 0\), the left-hand side is positive because \(\psi '(\Phi _r)\) is, while the right-hand side is zero. Hence, by (6.5)–(6.7), \((\mathcal {L}-r) u_{A^*}(x) + f(x) \le 0\) holds.

This result also holds for the case \(A^* = \infty \). In this case, \(0 > -r K + \sum _{i=1}^N c_i e^{a_i \widehat{A}} \Phi _r\varpi _r (a_i) + b \big (\frac{r}{\Phi _r}- {(\psi '(0+) -r \widehat{A})}\big ) + \Phi _r\Psi _f(\widehat{A})\), for any \(\widehat{A}\in \mathbb {R}\). Therefore \((\mathcal {L}-r) g(x) + f(x) < 0\) holds by the same reasoning as in (1) by simply replacing \(A^*\) with \(\widehat{A}\) for any \(\widehat{A} > x\). \(\square \)

We are now ready to verify the optimality of \(u_{A^*}(x)\) for the case \(A^* \in (-\infty , \infty ]\). Thanks to Lemma 2.2 and the continuous/smooth fit condition as in Remark 2.4, a version of Meyer–Ito’s formula as in Theorem IV.71 of [32] (see also Theorem 2.1 of [30]) implies

$$\begin{aligned} e^{-r t}u_{A^*}(X_t)-u_{A^*}(X_0)&= \int _0^t e^{-rs}(\mathcal {L}-r)u_{A^*}(X_{s-})\mathrm{d}s+ M_t, \end{aligned}$$

with the local martingale part

$$\begin{aligned} M_t&:= \int _0^t \sigma e^{-rs} u_{A^*}'(X_{s-}) \mathrm{d}B_s \!-\!\int _{(0,t]} \int _{(0,1)} e^{-rs}u_{A^*}'(X_{s-})y (N(\mathrm{d}s\times \mathrm{d}y)\!-\!\Pi (\mathrm{d}y) \mathrm{d}s)\\&\quad +\int _{(0,t]} \int _{(0, \infty )}e^{-rs}(u_{A^*}(X_{s-}\!-\!y)\!-\!u_{A^*}(X_{s-})\!+\!u_{A^*}'(X_{s-})y1_{\{0 < y < 1\}})(N(\mathrm{d}s\!\times \! \mathrm{d}y)\\&\quad -\Pi (\mathrm{d}y) \mathrm{d}s), \end{aligned}$$

where \(N(\mathrm{d}s \times \mathrm{d}x)\) is the Poisson random measure associated with the dual process \(-X\).

Fix any stopping time \(\tau \), and define for each \(m\in {\mathbb {N}}\) the stopping time \(T_m\) as

$$\begin{aligned} T_m :=\inf \{t>0\; : \;|X_t|> m\}, \end{aligned}$$

and the martingale process \(M=\{M_{t\wedge \tau \wedge T_m}: t\ge 0\}\), with \(M_0=0\). By optional sampling and because \((\mathcal {L} -r) u_{A^*} + f \le 0\) via (6.3) and Lemma 5.1,

$$\begin{aligned} \mathbb {E}^x \Big [ e^{-r (t \wedge \tau \wedge T_m)} u_{A^*}(X_{t \wedge \tau \wedge T_m}) + \int _0^{t \wedge \tau \wedge T_m} e^{-rs} f(X_s) \mathrm{d}s \Big ] \le u_{A^*}(x). \end{aligned}$$

When \(x < A^*\), \(u_{A^*}(x) = g(x) \ge g(A^*) > -\infty \) (the same result holds for \(A^* = \infty \) by Remark 2.3). On the other hand, if \(A^* \in (-\infty , \infty )\) and \(x > A^*\), because \(\partial u_A(x) / \partial A > 0\) on \((-\infty , A^*)\), the value \(u_{A^*}(x)\) is bounded from below by a limit:

$$\begin{aligned} u_{-\infty }(x) := \lim _{A \downarrow -\infty } u_A(x) = \lim _{A \downarrow -\infty } \mathbb {E}^x \left[ \int _0^{\tau _A} e^{-rt} f(X_t) \mathrm{d}t + e^{-q \tau _A} g(X_{\tau _A}) 1_{\{ \tau _A < \infty \}}\right] . \end{aligned}$$

Hence,

$$\begin{aligned} (u_{A^*})_- (x) \le (u_{-\infty })_- (x)&\le \! \limsup _{A \downarrow -\infty } \mathbb {E}^x \left[ \int _0^{\tau _A} e^{-rt} f_-(X_t) \mathrm{d}t \!+\! e^{-q \tau _A} g_-(X_{\tau _A}) 1_{\{ \tau _A < \infty \}}\right] \\&= \mathbb {E}^x \left[ \int _0^{\infty } e^{-rt} f_-(X_t) \mathrm{d}t \right] , \end{aligned}$$

where the last equality holds by monotone convergence applied to the \(f_-\) term and because \(g_-(X_{\tau _A}) \le -g(A) \vee 0\) on \(\{ \tau _A < \infty \}\), which is bounded because \(g\) is decreasing. Because \(f\) is increasing, the expectation on the right hand side decreases in \(x\) and hence

$$\begin{aligned} (u_{A^*})_- (x) \le \mathbb {E}^{A^*} \left[ \int _0^{\infty } e^{-rt} f_-(X_t) \mathrm{d}t \right] , \quad x > A^*. \end{aligned}$$

In sum, \((u_{A^*})_-\) is bounded from above. Recall also Remark 2.2. Hence, Fatou’s lemma gives upon \(t \uparrow \infty \) and \(m \uparrow \infty \)

$$\begin{aligned} \mathbb {E}^x \Big [ e^{-r \tau } u_{A^*}(X_{\tau }) 1_{\{\tau < \infty \}} + \int _0^{\tau } e^{-rs} f(X_s) \mathrm{d}s \Big ] \le u_{A^*}(x). \end{aligned}$$

Finally, (6.3) shows the result for \(A^* \in (-\infty , \infty ]\).

(ii) It is now left to show for the case \(A^* = -\infty \). Because \(\partial u_A(x) / \partial A < 0\) for any \(A \in \mathbb {R}\) as in (2.20), there again exists \(u_{-\infty }(x) := \lim _{A \downarrow -\infty } u_A(x)\). Assumption 2.2 guarantees that \(\lim _{A \downarrow -\infty }\mathbb {E}^x [e^{-q \tau _A}|X_{\tau _A}| 1_{\{ \tau _A < \infty \}}] = 0\); see e.g., [34]. Because the slope of \(g_-(x)\) is bounded on the half-line, this shows that

$$\begin{aligned} \lim _{A \downarrow -\infty }\mathbb {E}^x [e^{-q \tau _A}g(X_{\tau _A}) 1_{\{ \tau _A < \infty \}}] = 0. \end{aligned}$$

This together with Remark 2.2 shows that \(u_{-\infty }(x)\) has the desired expression.

Because \(\partial u_A(x) / \partial A < 0\) for any \(A \in \mathbb {R}\), \(u_{-\infty }(x) > g(x)\) for any \(x \in \mathbb {R}\) (hence the stopping region is an empty set). Moreover, because \(u_{-\infty }\) is attained by \(\tau ^*=\infty \), we have the claim.

1.4 Proof of Proposition 2.2

(1,2) We first suppose \(x < A^*\). Then by definition \(u_{A^*}(x) = g(x)\). Because \(u_A(x) = g(x)\) for any \(A \ge x\), it is sufficient to show \(u_A(x) \le g(x)\) for \(A < x\). This is indeed so because by (2.17), (2.20) and \(\Lambda (x) < 0\) due to \(x < A^*\),

$$\begin{aligned} u_A(x) \le u_x(x+) = g(x) + W^{(r)}(0) \Lambda (x) \le g(x) = u_{A^*}(x), \quad A < x < A^*. \end{aligned}$$

This proves (2). For (1), we additionally show for the case \(x \ge A^*\). By (2.20), \(u_{A^*}(x) \ge u_A(x)\) for any \(A \le x\). For \(A \ge x\), \(u_A(x) = g(x)\) and by (2.17), (2.20) and \(\Lambda (x) > 0\) due to \(x > A^*\),

$$\begin{aligned} u_{A^*}(x) \ge u_x(x+) = g(x) + W^{(r)}(0) \Lambda (x) \ge g(x) = u_A(x), \quad A \ge x > A^*. \end{aligned}$$

Therefore \(u_{A^*}(x) \ge u_A(x)\) uniformly in \(x \in \mathbb {R}\), as desired.

The corresponding value function (for (1)) can be expressed as the sum of (2.15):

$$\begin{aligned} \widetilde{u}(x) v&= g(A^*) Z^{(r)}(x-A^*) + W^{(r)} (x-A^*) \left( - \frac{r}{\Phi _r} g(A^*) + \rho _{g,A^*}^{(r)} + \Psi _f(A^*) \right) \\&\qquad - \varphi _{g,A^*}^{(r)}(x) - \Theta _f(x; A^*). \end{aligned}$$

From the definition of \(A^*\) that makes (2.18) vanish, it is simplified to

$$\begin{aligned} \widetilde{u}(x) = g(A^*) Z^{(r)}(x-A^*) + W^{(r)} (x-A^*) \frac{\sigma ^2}{2} g'(A^*) - \varphi _{g,A^*}^{(r)}(x) - \Theta _f(x; A^*), \end{aligned}$$

as desired.

(3) The proof is the same as that of Proposition 2.1(3).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamazaki, K. Contraction Options and Optimal Multiple-Stopping in Spectrally Negative Lévy Models. Appl Math Optim 72, 147–185 (2015). https://doi.org/10.1007/s00245-014-9274-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-014-9274-0

Keywords

Mathematics Subject Classification

Navigation