Skip to main content

Advertisement

Log in

Size Scaling of Contaminant Trace Metal Accumulation in the Infaunal Marine Clam Amiantis umbonella

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Size scaling of the accumulation of four trace metals was examined in the infaunal clam Amiantis umbonella in Kuwait Bay. In clams of varying shell length (2.5–5 cm), soft tissue growth in A. umbonella from a contaminated site was inhibited compared with clams from a less contaminated reference site. Body burdens of all four metals were positively correlated with clam soft tissue wet weight, but for Cd, Cu, and Pb, correlations were stronger in clams from the contaminated site (r2 = 0.6–0.9, p < 0.001) than the reference site (r2 = 0.2–0.3, p < 0.002). Scaling factors for the accumulation of Cd, Cu, and Pb in the soft tissues of A. umbonella from both sites were not significantly different than 1, indicating that clams accumulated these metals in proportion to growth with little regulation. The scaling factor of Hg in clams from the contaminated site also was 1 but was 0.5 and 2.4 for high and low Hg accumulating subpopulations of clams from the reference site, respectively. The greater retention of Hg with respect to growth in clams from the reference site than from the contaminated site requires further investigation to determine differences in Hg bioavailability at the two sites and the form of Hg these clams accumulate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Abdulghani E, El-Sammak A, Al-Sarawi M (2013) Environmental assessment of Kuwait Bay: an integrated approach. J Coast Conserv 17:445–462

    Article  Google Scholar 

  • Al-Ghadban AN, El-Sammak A (2005) Sources, distribution and composition of the suspended sediments, Kuwait Bay, Northern Arabian Gulf. J Arid Environ 60:647–661

    Article  Google Scholar 

  • Al-Khayat J, Al-Mohannadi M (2006) Ecology and biology of the benthic bivalvia Amiantis umbonella (Lamarck) in Khor Al-Adaid, Qatar. Egypt J Aquat Res 32:419–430

    Google Scholar 

  • Al-Majed NB, Preston MR (2000) An assessment of the total and methyl mercury content of zooplankton and fish tissue collected from Kuwait territorial waters. Mar Pollut Bull 40:298–307

    Article  CAS  Google Scholar 

  • Al-Mohanna SY, Al- Rukhais LB, Meakins RH (2003) Oogenesis in Amiantis umbonella (Mollusca: Bivalvia) in Kuwait Bay, Kuwait. J Mar Biol Assoc UK 83:1065–1072

    Article  Google Scholar 

  • Al-Sarawi HA, Jha AN, Al-Sarawi MA, Lyons BP (2015) Historic and contemporary contamination in the marine environment of Kuwait. Mar Pollut Bull 100:621–628

    Article  CAS  Google Scholar 

  • Alshemmari HA, Alotaibi Y, Owens RO (2010) Trace metal concentrations in the surface sediments of Sulaibikhat Bay Kuwait. Kuwait J Sci Eng 37:87–110

    CAS  Google Scholar 

  • Alyahya H, El-Gendy AH, Al Farraj S, El-Hedeny M (2011) Evaluation of heavy metal pollution in the Arabian Gulf using the clam (Meretrix Linnaeus), 1758. Water Air Soil Pollut 214:499–507

    Article  CAS  Google Scholar 

  • Al-Zamel AZ, Bou-Rabee F, Al-Sarawi MA, Olszewski M, Bem H (2006) Determination of the sediment deposition rates in the Kuwait Bay using Cs-137 and Pb-210. Nukleonika 51:S39–S44

    CAS  Google Scholar 

  • Al-Zamel A, Firyal A, Bou-Rabee F, Lesniewska E, Szynkowska M, Długosz M, Bem H (2010) Total mercury distribution in sediment cores from Kuwait Bay. Int J Environ Stud 67:505–513

    Article  CAS  Google Scholar 

  • Amisah S, Adjei-Boateng D, Obirikorang KA, Quagrainie KK (2009) Effects of clam size on heavy metal accumulation in whole soft tissues of Galatea paradoxa (Born, 1778) from the Volta estuary, Ghana. Int J Fish Aquat Toxicol 1:14–21

    CAS  Google Scholar 

  • Besada V, Sericano JL, Schultze F (2014) An assessment of two decades of trace metals monitoring in wild mussels from the Northwest Atlantic and Cantabrian coastal areas of Spain, 1991–2011. Environ Int 71:1–12

    Article  CAS  Google Scholar 

  • Blackmore G, Wang WX (2003) Inter-population differences in Cd, Cr, Se, and Zn accumulation by the green mussel Perna viridis acclimated at different salinities. Aquat Toxicol 62:205–218

    Article  CAS  Google Scholar 

  • Bosch DT, Dance SP, Moolenbeek RG, Oliver PG (1995) Seashells of Eastern Arabia. Motivate Press, Dubai

    Google Scholar 

  • Boyden CR (1974) Trace element content and body size in molluscs. Nature 251:311–314

    Article  CAS  Google Scholar 

  • Boyden CR (1977) Effect of size upon metal content of shellfish. J Mar Biol Assoc UK 57:675–714

    Article  CAS  Google Scholar 

  • Boyden CR, Phillips DJ (1981) Seasonal variation and inherent variability of trace elements in oysters and their implications for indicator studies. Mar Ecol Prog Ser 30:29–40

    Article  Google Scholar 

  • Bryan GW, Langston WJ, Hummerstone LG, Burt GR (1985) A guide to the assessment of heavy metal contamination in estuaries using biological indicators. Occ Publ Mar Biol Assoc UK 4:1–92

    Google Scholar 

  • Bu-Olayan AH, Subrahmanyam MN, Al-Sarawi M, Thomas BV (1998) Effects of the Gulf War oil spill in relation to trace metals in water, particulate matter, and PAHs from the Kuwait Coast. Environ Int 24:789–797

    Article  CAS  Google Scholar 

  • Burger J, Gochfeld M, Batang Z, Alikunhi N, Al-Jahdali R, Al-Jebreen D, Aziz MA et al (2014a) Fish consumption behavior and rates in native and non-native people in Saudi Arabia. Environ Res 133:141–148

    Article  CAS  Google Scholar 

  • Burger J, Gochfeld M, Batang Z, Alikunhi N, Al-Jahdali R, Al-Jebreen D, Aziz MA, Al-Suwailem A (2014b) Interspecific and locational differences in metal levels in edible fish tissue from Saudi Arabia. Environ Monit Assess 186:6721–6746

    Article  CAS  Google Scholar 

  • BuTayban NA, Preston MR (2004) The distribution and inventory of total and methyl mercury in Kuwait Bay. Mar Pollut Bull 49:930–937

    Article  CAS  Google Scholar 

  • de Mora S, Fowler SW, Wyse E, Azemard S (2004) Distribution of heavy metals in marine bivalves, fish and coastal sediments in the Gulf and Gulf of Oman. Mar Pollut Bull 49:410–434

    Article  CAS  Google Scholar 

  • Edward FB, Yap CK, Ismail A, Tan SG (2009) Interspecific variation of heavy metal concentrations in the different parts of tropical intertidal bivalves. Water Air Soil Pollut 196:297–309

    Article  CAS  Google Scholar 

  • Fischer H (1983) Shell weight as an independent variable in relation to cadmium content of molluscs. Mar Ecol Prog Ser 12:59–75

    Article  CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418

    Article  CAS  Google Scholar 

  • Gagné F, Blaise C, Pellerin J, Strand J (2006) Health status of Mya arenaria bivalves collected from contaminated sites in Canada (Saguenay Fjord) and Denmark (Odense Fjord) during their reproductive period. Ecotoxicol Environ Saf 64:348–361

    Article  CAS  Google Scholar 

  • Gagnon C, Fisher NS (1997) Bioavailability of sediment-bound methyl and inorganic mercury to a marine bivalve. Environ Sci Technol 31:993–998

    Article  CAS  Google Scholar 

  • Goldberg ED, Bowen VT, Farrington JW, Harvey G, Martin JH, Parker PL, Risebrough RW, Robertson W, Schneider E, Gamble E (1978) The mussel watch. Environ Conserv 5:101–125

    Article  CAS  Google Scholar 

  • Hashim A, Hajjaj M (2005) Impact of desalination plants fluid effluents on integrity of seawater, with the Arabian Gulf in perspective. Desalination 182:373–393

    Article  CAS  Google Scholar 

  • Hédouin L, Metian M, Teyssié JL, Fowler SW, Fichez R, Warnau M (2006) Allometric relationships in the bioconcentration of heavy metals by the edible tropical clam Gafrariumtumidum. Sci Total Environ 366:154–163

    Article  CAS  Google Scholar 

  • Hédouin L, Bustamante P, Churlaud C, Pringault O, Fichez R, Warnau M (2009) Trends in concentrations of selected metalloid and metals in two bivalves from the coral reefs in the SW lagoon of New Caledonia. Ecotoxicol Environ Saf 72:372–381

    Article  CAS  Google Scholar 

  • Hübner R, Astin KB, Herbert RJ (2009) Comparison of sediment quality guidelines (SQGs) for the assessment of metal contamination in marine and estuarine environments. J Environ Monit 11:713–722

    Article  CAS  Google Scholar 

  • Jenkins RL, Scheybeler BJ, Smith ML, Baird R, Lo MP, Haug RT (1981) Metals removal and recovery from municipal sludge. J Water Pollut Control Fed 53:25–32

    CAS  Google Scholar 

  • Langston WJ, Zhou M (1987) Cadmium accumulation, distribution and elimination in the bivalve Macoma balthica: neither metallothionein nor metallothionein-like proteins are involved. Mar Environ Res 21:225–237

    Article  CAS  Google Scholar 

  • Lattermann S, Höpner T (2008) Environmental impact and impact assessment of seawater desalination. Desalination 220:1–5

    Article  CAS  Google Scholar 

  • Lauenstein GG, Robertson A, O’Connor TP (1990) Comparison of trace metal data in mussels and oysters from a mussel watch programme of the 1970s with those from a 1980s programme. Mar Pollut Bull 21:440–447

    Article  CAS  Google Scholar 

  • Luoma SN, Rainbow PS (2008) Metal contamination in aquatic environments. Science and lateral management. Cambridge University Press, Cambridge

    Google Scholar 

  • Lyons BP, Barber JL, Rumney HS, Bolamb TPC, Bersuder P, Law RJ, Mason C, Smith AJ, Morris S, Devlin MJ, Al-Enezi M, Massoud MS, Al-Zaidan AS, Al-Sarawi HA (2015) Baseline survey of marine sediments collected from the State of Kuwait: PAHs, PCBs, brominated flame retardants and metal contamination. Mar Pollut Bull 100:629–636

    Article  CAS  Google Scholar 

  • Maanan M (2008) Heavy metal concentrations in marine molluscs from the Moroccan coastal region. Environ Pollut 153:176–183

    Article  CAS  Google Scholar 

  • Metian M, Warnau M, Cosson RP, Oberhänsli F, Bustamante P (2008) Bioaccumulation and detoxification processes of Hg in the king scallop Pecten maximus: field and laboratory investigations. Aquat Toxicol 90:204–213

    Article  CAS  Google Scholar 

  • Naser HA (2013) Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf: a review. Mar Pollut Bull 72:6–13

    Article  CAS  Google Scholar 

  • Naser HA (2014) Marine ecosystem diversity in the Arabian Gulf: threats and conservation. In: Grillo O (ed) Biodiversity: the dynamic balance of the planet. IntechOpen, London, pp 297–328

    Google Scholar 

  • Negri A, Burns K, Boyle S, Brinkman D, Webster N (2006) Contamination in sediments, bivalves and sponges of McMurdo Sound, Antarctica. Environ Pollut 143:456–467

    Article  CAS  Google Scholar 

  • Pan K, Wang WX (2008) The subcellular fate of cadmium and zinc in the scallop Chlamys nobilis during waterborne and dietary metal exposure. Aquat Toxicol 90:253–260

    Article  CAS  Google Scholar 

  • Pan K, Wang WX (2009) Biodynamics to explain the difference of copper body concentrations in five marine bivalve species. Environ Sci Technol 43:2137–2143

    Article  CAS  Google Scholar 

  • Pan K, Wang WX (2012) Trace metal contamination in estuarine and coastal environments in China. Sci Total Environ 421:3–16

    Article  CAS  Google Scholar 

  • Phillips DJH (1976) The common mussel Mytilus edulis as an indicator of pollution by zinc, cadmium, lead and copper. I. Effects of environmental variables on uptake of metals. Mar Biol 38:59–69

    Article  CAS  Google Scholar 

  • Phillips DJH (1980) Quantitative aquatic biological indicators: their use to monitor trace metal and organochlorine pollution. Applied Science Publishers, London

    Google Scholar 

  • Phillips DJH (1990) Use of macroalgae and invertebrates as monitors of metal levels in estuaries and coastal waters. In: Furness RW, Rainbow PS (eds) Heavy metals in the marine environment. CRC Press, Boca Raton, pp 81–99

    Google Scholar 

  • Rainbow PS (2002) Trace metal concentrations in aquatic invertebrates: why and so what. Environ Pollut 120:497–507

    Article  CAS  Google Scholar 

  • Reinfelder JR, Fisher NS, Luoma SN, Nichols JW, Wang WX (1998) Trace element trophic transfer in aquatic organisms: a critique of the kinetic model approach. Sci Total Environ 219:117–135

    Article  CAS  Google Scholar 

  • Reiss MJ (1989) The allometry of growth and reproduction. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Saavedra Y, González A, Fernández P, Blanco J (2004) Interspecific variation of metal concentrations in three bivalve mollusks from Galicia. Arch Environ Contam Toxicol 47:341–351

    Article  CAS  Google Scholar 

  • Saeedi H (2012) Availability of venerid clam, Amiantis umbonella as potential metal bioindicator in Bandar Abbas coast, the Persian Gulf. Egypt J Aquat Res 38:93–103

    Article  Google Scholar 

  • Saeedi H, Ardalan AA (2010) Incidence and biology of Arcotheres tivelae (Crustacea: Decapoda) in Amiantis umbonella (Bivalvia: Veneridae) on the northern coast of the Persian Gulf, Iran. J Mar Biol Assoc UK 90:655–661

    Article  Google Scholar 

  • Schartup AT, Balcom PH, Mason RP (2014) Sediment-porewater partitioning total sulfur and methylmercury production in estuaries. Environ Sci Technol 48:954–960

    Article  CAS  Google Scholar 

  • Sheppard C, Al-Husiani M, Al-Jamali F et al (2010) The Gulf: a young sea in decline. Mar Pollut Bull 60:13–38

    Article  CAS  Google Scholar 

  • Singh YT (2016) Relationships between environmental factors and biological parameters of Asian wedge clam, Donax scortum, morphometric analysis, length-weight relationship and condition index: a first report in Asia. J Mar Biol Assoc UK 97:1617–1633

    Article  Google Scholar 

  • Sokołowski A, Wołowicz M, Hummel H, Smolarz-Górska K, Fichet D, Radenac G, Thiriot-Quiévreux C, Namieśnik J (2004) Abnormal features of Macoma balthica (Bivalvia) in the Baltic Sea: alerting symptoms of environmental adversity. Mar Pollut Bull 49:17–22

    Article  CAS  Google Scholar 

  • Sokolowski A, Wolowicz M, Hummel H (2007) Metal sources to the Baltic clam Macoma balthica (Mollusca: Bivalvia) in the southern Baltic Sea (the Gulf of Gdansk). Mar Environ Res 63:236–256

    Article  CAS  Google Scholar 

  • Strong CR, Luoma SN (1981) Variations in the correlation of body size with concentrations of Cu and Ag in the bivalve Macoma balthica. Can J Fish Aquat Sci 38:1059–1064

    Article  CAS  Google Scholar 

  • Tarique Q, Burger J, Reinfelder JR (2012) Metal concentrations in organs of the clam Amiantis umbonella and their use in monitoring metal contamination of coastal sediments. Water Air Soil Pollut 223:2125–2136

    Article  CAS  Google Scholar 

  • Tarique Q, Burger J, Reinfelder JR (2013) Relative importance of burrow sediment and pore water to the accumulation of trace metals in the clam Amiantis umbonella. Arch Environ Contam Toxicol 65:89–97

    Article  CAS  Google Scholar 

  • Wang WX (2002) Interactions of trace metals and different marine food chains. Mar Ecol Prog Ser 243:295–309

    Article  CAS  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    Article  CAS  Google Scholar 

  • Yu R, Yuan X, Zhao Y, Hu G, Tu X (2008) Heavy metal pollution in intertidal sediments from Quanzhou Bay China. J Environ Sci 20:664–669

    Article  CAS  Google Scholar 

  • Zorba MA, Jacob PG, Al-Bloushi A, Al-Nafisi RR (1992) Clams as pollution bio-indicators and depuration. Sci Total Environ 120:195–204

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Mohammed Sarawi, the former director of the Environmental Public Authority of Kuwait, for assistance in collecting and processing specimens, data management, and laboratory analysis. They also thank Faiza Al-Yamani of the Kuwait Institute for Scientific Research and Manaf Behbehani and Salim Al-Mohanna of the University of Kuwait for their assistance. The digitized coastline was provided by Khaled Al-Salem of the Kuwait Institute for Scientific Research. This research was supported by a Hatch/McIntyre-Stennis grant through the New Jersey Agricultural Experiment Station and was performed under approved Rutgers University protocols. The results, conclusions and interpretations reported herein are the sole responsibility of the authors.

Funding

Funding was provided by New Jersey Agricultural Experiment Station (US) (Project No. 07125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Reinfelder.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarique, Q., Burger, J. & Reinfelder, J.R. Size Scaling of Contaminant Trace Metal Accumulation in the Infaunal Marine Clam Amiantis umbonella. Arch Environ Contam Toxicol 77, 368–376 (2019). https://doi.org/10.1007/s00244-019-00659-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-019-00659-0

Navigation