Skip to main content

Advertisement

Log in

The relationship between calcium oxalate lithiasis and chronic proinflammatory intestinal dysbiosis pattern: a prospective study

  • Original Paper
  • Published:
Urolithiasis Aims and scope Submit manuscript

Abstract

The objective is to establish whether a pattern of intestinal dysbiosis exists in calcium oxalate (CaOx) lithiasis and, if so, to identify its characteristics and explore whether there are differences in the pattern between CaOx dihydrate (COD) and monohydrate (COM) lithiasis. With this aim 24 patients diagnosed with CaOx lithiasis by means of optical microscopy and spectrometry were prospectively recruited. Faecal analysis was carried out by means of RT-PCR 16S rRNA assay and agar plate culture according to the methodology proposed by the Institute of Microecology (Herborn, Germany). The total number of bacteria was depleted due to COD lithiasis (p = 0.036). The mean values of immunoregulating microbiota were normal, but the percentage of normal values was lower in the COD group (30%) than in the COM group (69.2%) (p = 0.062). The total mean values of protective microbiota were normal in both groups. There was a large decrease in the mean values of the muconutritive microbiota Akkermansia muciniphila and Faecalibacterium prausnitzii, the most intense decline being observed in the COD group (p = 0.019). Levels of proteolytic microbiota were elevated in both groups, without differences between them. We conclude that patients with CaOx lithiasis have a chronic pro-inflammatory intestinal dysbiosis pattern characterised by a reduction in the total number of bacteria, a reduction in immunoregulating microbiota and a large reduction in muconutritive microbiota that is significantly more intense in COD lithiasis than in COM lithiasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sánchez-Martín FM, Angerri O, Emiliani E et al (2017) Epidemiology of urolithiasis in Spain: review of published demographic data in the period 1977–2016. Arch Esp Urol 70:294–303

    PubMed  Google Scholar 

  2. Millán F, Gracia S, Sánchez-Martín FM, Angerri O, Rousaud F, Villavicencio H (2010) A new approach to urinary stone analysis according to the combination of the components: experience with 7949 cases. Actas Urológicas Españolas (English Edition) 35:138–143

    Google Scholar 

  3. Allison MJ, Littlekide ET, James LF (1977) Changes in ruminal oxalate degradation rates associated with adaptation to oxalate ingestion. J Anim Sci 45:1173–1179

    CAS  PubMed  Google Scholar 

  4. Allison MJ, Cook HM (1981) Oxalate degradation by microbes of the large bowel of herbivores: the effect of dietary oxalate. Science 212:675–676

    CAS  PubMed  Google Scholar 

  5. Cornick NA, Allison MJ (1996) Anabolic incorporation of oxalate by Oxalobacter formigenes. Appl Environ Microbiol 62:3011–3013

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Siener R, Bangen U, Sidhu H, Hönow R, von Unruh G, Hesse A (2013) The role of Oxalobacter formigens colonization in calcium oxalate stone disease. Kidney Int 83:1144–1149

    CAS  PubMed  Google Scholar 

  7. Jiang J, Knight J, Easter LH, Neiberg R, Holmes RP, Assimos DG (2011) Impact of dietary calcium and oxalate, and Oxalobacter formigens colonization on urinary oxalate excretion. J Urol 186:135–139

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kaufman DW, Kelly JP, Curhan GC et al (2008) Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. J Am Soc Nephrol 19:1197–1203

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kelly JP, Curhan GC, Cave DR, Anderson TE, Kaufman DW (2011) Factors related to colonization with Oxalobacter formigenes in US adults. J Endourol 25:673–679

    PubMed  PubMed Central  Google Scholar 

  10. Batislam E, Yilmaz E, Yuvanc E, Kisa O, Kisa U (2012) Quantitative analysis of colonization with real-time PCR to identify the role of Oxalobacter formigenes in calcium oxalate urolithiasis. Urol Res 40:455–460

    PubMed  Google Scholar 

  11. Mittal RD, Kumar R, Bid HK, Mittal B (2005) Effect of antibiotics on Oxalobacter formigenes colonization of human gastrointestinal tract. J Endourol 19:102–106

    CAS  PubMed  Google Scholar 

  12. Troxel SA, Sidhu H, Kaul P, Low RK (2003) Intestinal Oxalobacter formigenes colonization in calcium oxalate stone formers and its relation to urinary oxalate. J Endourol 17:173–176

    PubMed  Google Scholar 

  13. Kumar R, Ghoshal UC, Singh G, Mittal RD (2004) Infrequency of colonization with Oxalobacter formigenes in inflammatory bowel disease: possible role in renal stone formation. J Gastroenterol Hepatol 19:1403–1409

    PubMed  Google Scholar 

  14. Lindsjo M, Danielson BG, Fellstrom B, Lithell H, Ljunghall S (1989) Intestinal absorption of oxalate and calcium in patients with jejunoileal bypass. Scand J Urol Nephrol 23:283–289

    CAS  PubMed  Google Scholar 

  15. Allison MJ, Cook HM, Milne DB, Gallager S, Clayman RV (1986) Oxalate degradation by gastrointestinal bacteria from humans. J Nutr 116:455–460

    CAS  PubMed  Google Scholar 

  16. Mogna L, Pane M, Nicola S, Raiteri E (2014) Screening of different probiotic strains for their in vitro ability to metabolise oxalates. Any prospective use in humans? J Clin Gastroenterol 48:91–95

    Google Scholar 

  17. Miller AW, Dearing D (2013) The metabolic and ecological interactions of oxalate-degrading bacteria in the Mammalian gut. Pathogens 2:636–652

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hatch M (2017) Gut microbiota and oxalate homeostasis. Ann Transl Med 5:36

    PubMed  PubMed Central  Google Scholar 

  19. Klimesova K, Whittamore JM, Hatch M (2015) Bifidobacterium animalis subsp. Lactis decreases urinary oxalate excretion in a mouse model of primary hyperoxaluria. Urolithiasis 43:107–117

    CAS  PubMed  Google Scholar 

  20. Turroni S, Vitali B, Bendazzoli C et al (2007) Oxalate consumption by lactobacilli: evaluation of oxalyl-CoA decarboxylase and formyl-CoA transferase activity in Lactobacillus acidophilus. J Appl Microbiol 103:1600–1609

    CAS  PubMed  Google Scholar 

  21. Stern JM, Moazami S, Qiu Y et al (2016) Evidence for a distinct gut microbiome in kidney stone formers compared to non-stone formers. Urolithiasis 44:299–407

    Google Scholar 

  22. Sidhu H, Schmidt ME, Cornelius T et al (1999) Direct correlation between hyperoxaluria/oxalate stone disease and the absence of the gastrointestinal tract dwelling bacterium Oxalobacter formigenes: possible prevention by gut recolonization or enzyme replacement therapy. J Am Soc Nephrol 10:S334–S340

    CAS  PubMed  Google Scholar 

  23. Kharlamb V, Schelker J, Francois F, Jiang J, Holmes RP, Goldfarb DS (2011) Oral antibiotic treatment of Helycobacter pylori leads to persistently reduced intestinal colonization rates with Oxalobacter formigenes. J Endourol 25:1781–1785

    PubMed  PubMed Central  Google Scholar 

  24. Sidhu H, Hoppe B, Hesse A et al (1998) Absence of Oxalobacter formigenes in cystic fibrosis patients: a risk factor for hyperoxaluria. Lancet 352:1026–1029

    CAS  PubMed  Google Scholar 

  25. Borghi L, Nouvenne A, Meschi T (2010) Probiotics and dietary manipulations in calcium oxalate nephrolithiasis: two sides of the same coin? Kidney Int 78:1063–1065

    CAS  PubMed  Google Scholar 

  26. Lieske JC, Tremaine WJ, De Simone C et al (2010) Diet, but no oral probiotics, effectively reduces urinary oxalate excretion and calcium oxalate supersaturation. Kidney Int 78:1178–1185

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Okombo J, Liebman M (2010) Probiotic-induced reduction of gastrointestinal oxalate absorption in healthy subjects. Urol Res 38:169–178

    PubMed  Google Scholar 

  28. Ferraz R, Marques NC, Froeder L et al (2009) Effects of Lactobacillus casei and Bifidobacterium breve on urinary oxalate excretion in nephrolithiasis patients. Urol Res 37:95–100

    CAS  PubMed  Google Scholar 

  29. Campieri C, Campieri M, Bertuzzi V et al (2001) Reduction of oxaluria after an oral course of lactic acid bacteria at high concentration. Kidney Int 60:1097–1105

    CAS  PubMed  Google Scholar 

  30. Lieske JC, Goldfarb DS, De Simone C, Regnier C (2005) Use of a probiotic to decrease enteric hyperoxaluria. Kidney Int 68:1244–1249

    CAS  PubMed  Google Scholar 

  31. Goldfarb DS, Modersitzki F, Asplin JR (2007) A randomized, controlled trial of lactic acid bacteria for idiopathic hyperoxaluria. Clin J Am Soc Nephrol 2:745–749

    PubMed  Google Scholar 

  32. Peck AB, Canales BK, Nguyen CQ (2016) Oxalate-degrading microorganisms or oxalate-degrading enzymes: which is the future therapy for enzymatic dissolution of calcium-oxalate uroliths in recurrent stone disease? Urolithiasis 44:45–50

    CAS  PubMed  Google Scholar 

  33. Gnanandarajah JS, Johnson TJ, Kim HB, Abrahante JE, Lulich JP, Murtaugh MP (2012) Comparative faecal microbiota of dogs with and without calcium oxalate stones. J Appl Microbiol 113:745–756

    CAS  PubMed  Google Scholar 

  34. Ticinesi A, Milani C, Guerra A et al (2018) Understanding the gut-kidney axis in nephrolithiasis: an analysis of the gut microbiota composition and functionality of stone formers. Gut 67:2097–2106

    CAS  PubMed  Google Scholar 

  35. Tang R, Jiang Y, Tan A et al (2018) 16S rRNA gene sequencing reveals altered composition of gut microbiota in individuals with kidney stones. Urolithiasis 46:503–514

    CAS  PubMed  Google Scholar 

  36. Dornbier RA, Bajic P, Van Kuiken M et al. The microbiome of calcium-based urinary stones. Urolithiasis. doi: 10.1007/s00240-019-01146-w.

  37. Zampini A, Nguyen AH, Rose E, Monga M, Miller AW (2019) Defining dysbiosis in patients with urolithiasis. Sci Rep. https://doi.org/10.1038/s41598-019-41977-6

    Article  PubMed  PubMed Central  Google Scholar 

  38. Reiss A, Jacobi M, Rusch K, Schwiertz A (2016) Association of dietary type with fecal microbiota and short chain fatty acids in vegans and omnivores. J Int Soc Microbiota 2:1–9

    Google Scholar 

  39. Zimmer J, Lange B, Frick JS et al. (2011) A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur J Clin Nutr. 10.138/ejcn.2011.141.

  40. Galecka M, Szachta P, Bartnicka A, Lykowska-Szuber L, Eder P, Schwiertz A (2013) Faecalibacterium prausnitzii and Crohn’s Disease—is there any connection? Pol J Microbiol 62:91–95

    PubMed  Google Scholar 

  41. Enck P, Zimmermann K, Rusch K, Schwiertz A, Klosterhalfen S, Frick JS (2009) The effects of aging on the colonic bacterial microflora in adults. Gastroenterol 47:653–658

    CAS  Google Scholar 

  42. Gràcia-García S, Millán-Rodríguez F, Rousaud-Barón F et al (2011) Why and how we must analyze urinary calculi. Actas Urol Esp 35:354–362

    PubMed  Google Scholar 

  43. Lau S, Gerhold K, Zimmermann K et al (2012) Oral application of bacterial lysate in infancy decreases the risk of atopic dermatitis in children with 1 atopic parent in a randomized, placebo-controlled trial. J Allergy Clin Immunol 129:1040–1047

    PubMed  Google Scholar 

  44. McFarland LV (2008) Meta-analysis of probiotics for the treatment of irritable bowel syndrome. World J Gastroenterol 14:2650–2661

    PubMed  PubMed Central  Google Scholar 

  45. Enck P, Zimmermann K, Menke G, Müller-Lissner S, Martens U, Klosterhalfen S (2008) A mixture of Escherichia coli (DSM 17252) and Enterococcus faecalis (DSM 16440) for treatment of the irritable bowel syndrome—a randomized controlled trial with primary care physicians. Neurogastroenterol Motil. https://doi.org/10.1111/j.1365-2982.2008.00156.x

    Article  PubMed  Google Scholar 

  46. Habermann W, Zimmermann K, Skarabis H, Kunze R, Rusch V (2002) Reduction of acute relapses in patients with chronic recurrent hypertrophic sinusitis during treatment with a bacterial immunostimulant (Enterococcus faecalis Bacteria of human origin—a medical probiotic). Arzneim Forsch/Drug Res 52(8):622–627

    CAS  Google Scholar 

  47. Kitz R, Martens U, Ziesenib E, Enck P, Rose MA, Probiotic E (2012) Faecalis—adjuvant therapy in children with recurrent rhino-sinusitis. Cent Eur J Med. https://doi.org/10.2478/s11536-011-0160-8

    Article  Google Scholar 

  48. Habermann W, Zimmerman K, Skarabis H, Kunze R, Rusch V (2001) Influence of a bacterial immunostimulant (human Enterococcus faecalis bacteria) on the occurrence of relapses in patients with chronic recurrent bronchitis. Arzneim Forsch/Drug Res 51(2):931–937

    CAS  Google Scholar 

  49. Enck P, Zimmermann K, Menke G, Klosterhalfen S (2009) Randomized controlled treatment trial of irritable bowel syndrome with a probiotic E. coli preparation (DSM17252) compared to placebo. Z Gastroenterol 47:209–214

    CAS  PubMed  Google Scholar 

  50. Haller D, Antoine JM, Bengmark S, Enck P, Rijkers GT, Lenoir-Wijnkoop I (2010) Guidance for substantiating the evidence for beneficial effects of probiotics: probiotics in chronic inflammatory bowel disease and the functional disorder irritable bowel syndrome. J Nutrition. https://doi.org/10.3945/jn.109.113746

    Article  Google Scholar 

  51. Martens U, Enck P, Ziesenib E (2010) Probiotic treatment of irritable bowel syndrome in children. German Med Sci 8:1–7

    Google Scholar 

  52. Hungin APS, Mulligan C, Pot B et al (2013) Aliment Pharmacol Ther 38:864–886

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sudo N (2019) Biogenic amines: signals between commensal microbiota and gut physiology. Front Endocrinol (Lausanne) 10(504):2019. https://doi.org/10.3389/fendo.2019.00504.eCollection

    Article  Google Scholar 

  54. Osuka A, Shimizu K, Ogura H, Tasaki O, Hamasaki T, Asahara T et al (2012) Prognostic impact of fecal pH in critically ill patients. Crit Care 16:R119. https://doi.org/10.1186/cc11413

    Article  PubMed  PubMed Central  Google Scholar 

  55. Woodmansey EJ, McMurdo ME, Macfarlane GT, Macfarlane S (2004) Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects. Appl Environ Microbiol 70:6113–6122

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kushkevych I, Dordevic D, Vítezová M (2019) Analysis of pH dose-dependent growth of sulfate-reducing bacteria. Open Med (Wars) 14:66–74

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Félix Millán Rodríguez.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Millán Rodríguez, F., Sabiote Rubio, L., Girón Nanne, I. et al. The relationship between calcium oxalate lithiasis and chronic proinflammatory intestinal dysbiosis pattern: a prospective study. Urolithiasis 48, 321–328 (2020). https://doi.org/10.1007/s00240-020-01181-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-020-01181-y

Keywords

Navigation