Skip to main content

Advertisement

Log in

Incorporation of osteopontin peptide into kidney stone-related calcium oxalate monohydrate crystals: a quantitative study

  • Original Paper
  • Published:
Urolithiasis Aims and scope Submit manuscript

Abstract

Polyelectrolyte–crystal interactions regulate many aspects of biomineralization, including the shape, phase, and aggregation of crystals. Here, we quantitatively investigate the role of phosphorylation in interactions with calcium oxalate monohydrate crystals (COM), using synthetic peptides corresponding to the sequence 220–235 in osteopontin, a major inhibitor of kidney stone-related COM formation. COM formation is induced in the absence or presence of fluorescent-labeled peptides containing either no (P0), one (P1) or three (P3) phosphates and their adsorption to and incorporation into crystals determined using quantitative fluorimetry (also to determine maximum adsorption/incorporation), confocal/scanning electron microscopy and X-ray/Raman spectroscopy. Results demonstrate that higher phosphorylated peptides show stronger irreversible adsorption to COM crystals (P3: K0 ~ 66.4 × 106 M−1; P1: K0 ~ 29.4 × 106 M−1) and higher rates of peptide incorporation into crystals (maximum: P3: ~ 58.8 ng and P1: ~ 8.9 ng per µg of COM) than peptides containing less phosphate groups. However, crystals grown at that level of incorporable P3 show crystal-cleavage. Therefore, extrapolation of maximum incorporable P3 was carried out for crystals that are still intact, resulting in ~ 49.1 ng P3 µg−1 COM (or ~ 4.70 wt%). Both processes, adsorption and incorporation, proceed via the crystal faces {100} > {121} > {010} (from strongest to weakest), with X-ray and Raman spectroscopy indicating no significant effect on the crystal structure. This suggests a process in which the peptide is surrounded by growing crystal matrix and then incorporated. In general, knowing the quantity of impurities in crystalline/ceramic matrices (e.g., kidney stones) provides more control over stress/strain or solubilities, and helps to categorize such composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New York

    Google Scholar 

  2. Reis RL, Weiner S (2004) Learning from nature how to design new implantable biomaterials from biomineralization fundamentals to biomimetic materials and processing routes. Kluwer Academy, Dordrecht

    Google Scholar 

  3. Mann S (1996) Biomimetic materials chemistry. Wiley-VCH, New York

    Google Scholar 

  4. Rotello V (2004) Nanoparticles—building blocks for nanotechnology. Kluwer Academic/Plenum, New York

    Google Scholar 

  5. Hunter GK, O’Young J, Grohe B, Karttunen M, Goldberg HA (2010) The flexible polyelectrolyte hypothesis of protein–biomineral interaction; feature article. Langmuir 26:18639–18646

    PubMed  CAS  Google Scholar 

  6. Berman A, Addadi L, Kvick A, Leiserowitz L, Nelson M, Weiner S (1990) Intercalation of sea-urchin proteins in calcite—study of a crystalline composite-material. Science 250:664–667

    PubMed  CAS  Google Scholar 

  7. Li HY, Estroff LA (2009) Calcite growth in hydrogels: assessing the mechanism of polymer-network incorporation into single crystals. Adv Mater 21:470–473

    CAS  Google Scholar 

  8. Bushinsky DA (2001) Kidney stones. Adv Intern Med 47:219–238

    PubMed  CAS  Google Scholar 

  9. Daudon M, Jungers P, Bazin D (2008) Peculiar morphology of stones in primary hyperoxaluria. N Engl J Med 359:100–102

    PubMed  CAS  Google Scholar 

  10. Lieske JC, Toback FG (2000) Renal cell-urinary crystal interactions. Curr Opin Nephrol Hypertens 9:349–355

    PubMed  CAS  Google Scholar 

  11. Millan A (2001) Crystal growth shape of whewellite polymorphs: influence of structure distortions on crystal shape. Cryst Growth Des 1:245–254

    CAS  Google Scholar 

  12. Grohe B, Chan BPH, Sørensen ES, Lajoie G, Goldberg HA, Hunter GK (2011) Cooperation of phosphates and carboxylates controls calcium oxalate crystallization in ultrafiltered urine. Urol Res 39:327–338

    PubMed  CAS  Google Scholar 

  13. Grohe B, O’Young J, Langdon A, Karttunen M, Goldberg HA, Hunter GK (2011) Citrate modulates calcium oxalate crystal growth by face-specific interactions. Cells Tissues Organs 194:176–181

    PubMed  CAS  Google Scholar 

  14. Touryan LA, Clark RH, Gurney RW, Stayton PS, Kahr B, Vogel V (2001) Incorporation of fluorescent molecules and proteins into calcium oxalate monohydrate single. J Cryst Growth 233:380–388

    CAS  Google Scholar 

  15. Tazzoli V, Domeneghetti C (1980) The crystal-structures of whewellite and weddellite—reexamination and comparison. Am Miner 65:327–334

    CAS  Google Scholar 

  16. Ryall RL, Fleming DE, Doyle IR, Evans NA, Dean CJ, Marshall VR (2001) Intracrystalline proteins and the hidden ultrastructure of calcium oxalate urinary crystals: implications for kidney stone formation. J Struct Biol 134:5–14

    Google Scholar 

  17. Coe FL, Evan AP, Worcester EM, Lingeman JE (2010) Three pathways for human kidney stone formation. Urol Res 38:147–160

    PubMed  PubMed Central  Google Scholar 

  18. Jaggi M, Nakagawa Y, Zipperle L, Hess B (2007) Tamm–Horsfall protein in recurrent calcium kidney stone formers with positive family history: abnormalities in urinary excretion, molecular structure and function. Urol Res 35:55–62

    PubMed  CAS  Google Scholar 

  19. Aggarwal A, Tessadri R, Grohe B (2015) Protein–crystal interactions in calcium oxalate kidney stone formation. Int J Biochem Biophys 3:34–48

    CAS  Google Scholar 

  20. Langdon A, Grohe B (2016) The osteopontin-controlled switching of calcium oxalate monohydrate morphologies in artificial urine provides insights into the formation of papillary kidney stones. Colloids Surf B Biointerfaces 146:296–306

    PubMed  CAS  Google Scholar 

  21. Asplin JR, Hoyer J, Gillespie C, Coe FL (1995) Uropontin (UP) inhibits aggregation of calcium-oxalate monohydrate (COM) crystals. J Am Soc Nephrol 6:941

    Google Scholar 

  22. Kumar V, de la Vega LP, Farell G, Lieske JC (2005) Urinary macromolecular inhibition of crystal adhesion to renal epithelial cells is impaired in male stone formers. Kidney Int 68:1784–1792

    PubMed  Google Scholar 

  23. Iguchi M, Takamura C, Umekawa T, Kurita T, Kohri K (1999) Inhibitory effects of female sex hormones on urinary stone formation in rats. Kidney Int 56:479–485

    PubMed  CAS  Google Scholar 

  24. Yagisawa T, Ito F, Osaka Y, Amano H, Kobayashi C, Toma H (2001) The influence of sex hormones on renal osteopontin expression and urinary constituents in experimental urolithiasis. J Urol 166:1078–1082

    PubMed  CAS  Google Scholar 

  25. Kellum KM, Lindberg JS, Hamm LL, Husserl FE, Burshell AL, Kok DJ, Westervelt C, Copley RB, Reisin E, Cole FEC (2001) Osteopontin inhibits calcium oxalate agglomeration in post menopausal stone formers. Am J Kidney Dis 37:A21–A21

    Google Scholar 

  26. Dey J, Creighton A, Lindberg JS, Fuselier HA, Kok DJ, Cole FE, Hamm LL (2002) Estrogen replacement increased the citrate and calcium excretion rates in postmenopausal women with recurrent urolithiasis. J Urol 167:169–171

    PubMed  CAS  Google Scholar 

  27. Yu J, Yin B (2017) Postmenopausal hormone and the risk of nephrolithiasis: a meta-analysis. EXCLI J 16:986–994

    PubMed  PubMed Central  Google Scholar 

  28. Kok DJ, Khan SR (1994) Calcium-oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int 46:847–854

    PubMed  CAS  Google Scholar 

  29. Fernandez JC, Delasnieves FJ, Salcedo JS, Hidalgoalvarez R (1990) The microelectrophoretic mobility and colloid stability of calcium-oxalate monohydrate dispersions in aqueous-media. J Colloid Interface Sci 135:154–164

    Google Scholar 

  30. Chan BPH, Vincent K, Lajoie GA, Goldberg HA, Grohe B, Hunter GK (2012) On the catalysis of calcium oxalate dihydrate formation by osteopontin peptides. Colloids Surf B Biointerfaces 96:22–28

    PubMed  CAS  Google Scholar 

  31. Jung T, Sheng XX, Choi CK, Kim WS, Wesson JA, Ward MD (2004) Probing crystallization of calcium oxalate monohydrate and the role of macromolecule additives with in situ atomic force microscopy. Langmuir 20:8587–8596

    PubMed  CAS  Google Scholar 

  32. Sheng X, Jung T, Wesson JA, Ward MD (2005) Adhesion at calcium oxalate crystal surfaces and the effect of urinary constituents. Proc Natl Acad Sci USA 102:267–272

    Google Scholar 

  33. Kok DJ (1995) Inhibitors of calcium oxalate crystallization. In: Khan SR (ed) Calcium oxalate in biological systems. CRC, Boca Raton, pp 23–36

    Google Scholar 

  34. Grohe B, Taller A, Vincent PL, Tieu LD, Rogers KA, Heiss A, Sorensen ES, Mittler S, Goldberg HA, Hunter GK (2009) Crystallization of calcium oxalates is controlled by molecular hydrophilicity and specific polyanion-crystal interactions. Langmuir 25:11635–11646

    PubMed  CAS  Google Scholar 

  35. Hunter GK, Grohe B, Jeffrey S, O’Young J, Sørensen ES, Goldberg HA (2009) Role of phosphate groups in inhibition of calcium oxalate crystal growth by osteopontin. Cells Tissues Organs 189:44–50

    PubMed  CAS  Google Scholar 

  36. Thurgood LA, Cook AF, Sorensen ES, Ryall RL (2010) Face-specific incorporation of osteopontin into urinary and inorganic calcium oxalate monohydrate and dihydrate crystals. Urol Res 38:357–376

    PubMed  CAS  Google Scholar 

  37. Khan SR, Kok DJ (2004) Modulators of urinary stone formation. Front Biosci 9:1450–1482

    PubMed  CAS  Google Scholar 

  38. Viswanathan P, Rimer JD, Kolbach AM, Ward MD, Kleinman JG, Wesson JA (2011) Calcium oxalate monohydrate aggregation induced by aggregation of desialylated Tamm–Horsfall protein. Urol Res 39:269–282

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Taller A, Grohe B, Rogers KA, Goldberg HA, Hunter GK (2007) Specific adsorption of osteopontin and synthetic polypeptides to calcium oxalate monohydrate crystals. Biophys J 93:1768–1777

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Grohe B, Hug S, Langdon A, Jalkanen J, Rogers KA, Goldberg HA, Karttunen M, Hunter GK (2012) Mimicking the biomolecular control of calcium oxalate monohydrate crystal growth: effect of contiguous glutamic acids. Langmuir 28:12182–12190

    PubMed  CAS  Google Scholar 

  41. Kazemi-Zanjani N, Chen HH, Goldberg HA, Hunter GK, Grohe B, Lagugne-Labarthet F (2012) Label-free mapping of osteopontin adsorption to calcium oxalate monohydrate crystals by tip-enhanced raman spectroscopy. J Am Chem Soc 134:17076–17082

    PubMed  CAS  Google Scholar 

  42. Grohe B, O’Young J, Ionescu DA, Lajoie G, Rogers KA, Karttunen M, Goldberg HA, Hunter GK (2007) Control of calcium oxalate crystal growth by face-specific adsorption of an osteopontin phosphopeptide. J Am Chem Soc 129:14946–14951

    PubMed  CAS  Google Scholar 

  43. O’Young J, Chirico S, Al Tarhuni N, Grohe B, Karttunen M, Goldberg HA, Hunter GK (2009) Phosphorylation of osteopontin peptides mediates adsorption to and incorporation into calcium oxalate crystals. Cell Tissues Org 189:51–55

    Google Scholar 

  44. Farmanesh S, Ramamoorthy S, Chung JH, Asplin JR, Karande P, Rimer JD (2014) Specificity of growth inhibitors and their cooperative effects in calcium oxalate monohydrate crystallization. J Am Chem Soc 136:367–376

    PubMed  CAS  Google Scholar 

  45. Cabrera N, Vermilyea DA (1958) The growth of crystals from solution. In: Doremus RH, Roberts BW, Turnbul D (eds) Growth and perfection of crystals—proceedings of the international conference, cooperstown. Wiley, New York, pp 393–410

    Google Scholar 

  46. Weaver ML, Qiu SR, Hoyer JR, Casey WH, Nancollas GH, De Yoreo JJ (2007) Inhibition of calcium oxalate monohydrate growth by citrate and the effect of the background electrolyte. J Cryst Growth 306:135–145

    CAS  Google Scholar 

  47. De Yoreo JJ, Vekilov PG (2003) Principles of crystal nucleation and growth. In: Dove PM, De Yoreo JJ, Weiner S (eds) Biomineralization mineralogical society of america. Geochemical Society, Washington, pp 57–93

    Google Scholar 

  48. Nene SS, Hunter GK, Goldberg HA, Hutter JL (2013) Reversible inhibition of calcium oxalate monohydrate growth by an osteopontin phosphopeptide. Langmuir 29:6287–6295

    PubMed  CAS  Google Scholar 

  49. Grohe B, Rogers KA, Goldberg HA, Hunter GK (2006) Crystallization kinetics of calcium oxalate hydrates studied by scanning confocal interference microscopy. J Cryst Growth 295:148–157

    CAS  Google Scholar 

  50. Ster A, Safranko S, Bilic K, Markovic B, Kralj D (2018) The effect of hydrodynamic and thermodynamic factors and the addition of citric acid on the precipitation of calcium oxalate dihydrate. Urolithiasis 46:243–256

    PubMed  CAS  Google Scholar 

  51. Schmidt MJ (1979) Understanding and using statistics: basic concepts. Heath, Lexington

    Google Scholar 

  52. Hug S, Grohe B, Jalkanen J, Chan BPH, Galarreta B, Vincent K, Lagugné-Labarthet F, Lajoie G, Goldberg HA, Karttunen M, Hunter GK (2012) Mechanism of inhibition of calcium oxalate crystal growth by an osteopontin phosphopeptide. Soft Matter 8:1226–1233

    CAS  Google Scholar 

  53. Deutsch M, Forster E, Holzer G, Hartwig J, Hamalainen K, Kao CC, Huotari S, Diamant R (2004) X-ray spectrometry of copper: new results on an old subject. J Res Nat Inst Stand Technol 109:75–98

    CAS  Google Scholar 

  54. Königsberger E, Königsberger L-C (2001) Thermodynamic modeling of crystal deposition in humans. J Pure Appl Chem 73:785–797

    Google Scholar 

  55. Alberty RA, Silbey RJ (1992) Physical chemistry. Wiley, New York

    Google Scholar 

  56. Shippey TA (1980) Vibrational studies of calcium-oxalate monohydrate (whewellite) and an anhydrous phase of calcium-oxalate. J Mol Struct 63:157–166

    CAS  Google Scholar 

  57. Frost RL, Weier ML (2004) Thermal treatment of whewellite—a thermal analysis and Raman spectroscopic study. Thermochim Acta 409:79–85

    CAS  Google Scholar 

  58. Xiao Y, Karttunen M, Jalkanen J, Mussi MCM, Liao Y, Grohe B, Lagugne-Labarthet F, Siqueira WL (2015) Hydroxyapatite growth inhibition effect of pellicle statherin peptides. J Dent Res 94:1106–1112

    PubMed  CAS  Google Scholar 

  59. Hug S, Hunter GK, Goldberg H, Karttunen M (2010) Ab initio simulations of peptide-mineral interactions. Recent Dev Comput Simul Stud Condens Matter Phys 4:51–60

    CAS  Google Scholar 

  60. Kok DJ, Blomen LJMJ, Westbroek P, Bijvoet OLM (1986) Polysaccharide from coccoliths (CaCo3 biomineral)—influence on crystallization of calcium-oxalate monohydrate. Eur J Biochem 158:167–172

    PubMed  CAS  Google Scholar 

  61. Haynes CA, Norde W (1994) Globular proteins at solid/liquid interfaces. Colloids Surf B Biointerfaces 2:517–566

    CAS  Google Scholar 

  62. Tsortos A, Nancollas GH (1999) The adsorption of polyelectrolytes on hydroxyapatite crystals. J Colloid Interface Sci 209:109–115

    PubMed  CAS  Google Scholar 

  63. Lin YP, Singer PC, Aiken GR (2005) Inhibition of calcite precipitation by natural organic material: kinetics, mechanism, and thermodynamics. Environ Sci Technol 39:6420–6428

    PubMed  CAS  Google Scholar 

  64. Dimova R, Lipowsky R, Mastai Y, Antonietti M (2003) Binding of polymers to calcite crystals in water: characterization by isothermal titration calorimetry. Langmuir 19:6097–6103

    CAS  Google Scholar 

  65. Wesson JA, Worcester EM, Wiessner JH, Mandel NS, Kleinman JG (1998) Control of calcium oxalate crystal structure and cell adherence by urinary macromolecules. Kidney Int 53:952–957

    PubMed  CAS  Google Scholar 

  66. Wikiel K, Burke EM, Perich JW, Reynolds EC, Nancollas GH (1994) Hydroxyapatite mineralization and demineralization in the presence of synthetic phosphorylated pentapeptides. Arch Oral Biol 39:715–721

    PubMed  CAS  Google Scholar 

  67. Goiko M, Dierolf J, Gleberzon JS, Liao YY, Grohe B, Goldberg HA, de Bruyn JR, Hunter GK (2013) Peptides of matrix GLA protein inhibit nucleation and growth of hydroxyapatite and calcium oxalate monohydrate crystals. Plos One 8:e80344

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Wu WJ, Nancollas GH (1996) Interfacial free energies and crystallization in aqueous media. J Colloid Interface Sci 182:365–373

    CAS  Google Scholar 

  69. Grohe B (2017) Synthetic peptides derived from salivary proteins and the control of surface charge densities of dental surfaces improve the inhibition of dental calculus formation. Mater Sci Eng C 77:58–68

    CAS  Google Scholar 

  70. Wang L (1996) Adsorption of (poly)maleic acid and aquatic fulvic acids by goethite in: environmental sciences. The Ohio State University, Columbus

    Google Scholar 

  71. Grohe B, Miehe G, Wegner G (2001) Additive controlled crystallization of barium titanate powders and their application for thin-film ceramic production: part II. From nano-sized powders to ceramic thin films. J Mater Res 16:1911–1915

    CAS  Google Scholar 

  72. Elhadj S, De Yoreo JJ, Hoyer JR, Dove PM (2006) Role of molecular charge and hydrophilicity in regulating the kinetics of crystal growth. Proc Natl Acad Sci USA 103:19237–19242

    PubMed  CAS  Google Scholar 

  73. Sethmann I, Grohe B, Kleebe HJ (2014) Replacement of hydroxylapatite by whewellite: implications for kidney-stone formation. Mineral Mag 78:91–100

    CAS  Google Scholar 

  74. Beck BB, Baasner A, Buescher A, Habbig S, Reintjes N, Kemper MJ, Sikora P, Mache C, Pohl M, Stahl M, Toenshoff B, Pape L, Fehrenbach H, Jacob DE, Grohe B, Wolf MT, Nurnberg G, Yigit G, Salido EC, Hoppe B (2013) Novel findings in patients with primary hyperoxaluria type III and implications for advanced molecular testing strategies. Eur J Hum Genet 21:162–172

    PubMed  CAS  Google Scholar 

  75. Walton RC, Kavanagh JP, Heywood BR (2003) The density and protein content of calcium oxalate crystals precipitated from human urine: a tool to investigate ultrastructure and the fractional volume occupied by organic matrix. J Struct Biol 143:14–23

    PubMed  CAS  Google Scholar 

  76. Hoyer JR (1994) Uropontin in urinary calcium stone formation. Miner Electrolyte Metab 20:385–392

    PubMed  CAS  Google Scholar 

  77. Warpehoski MA, Buscemi PJ, Osborn DC, Finlayson B, Goldberg EP (1981) Distribution of organic matrix in calcium-oxalate renal calculi. Calcif Tissue Int 33:211–222

    PubMed  CAS  Google Scholar 

  78. Jacob DE, Grohe B, Gessner M, Beck BB, Hoppe B (2013) Kidney stones in primary hyperoxaluria: new lessons learnt. Plos One 8:e70617

    PubMed  PubMed Central  CAS  Google Scholar 

  79. Sethmann I, Wendt-Nordahl G, Knoll T, Enzmann F, Simon L, Kleebe HJ (2017) Microstructures of Randall’s plaques and their interfaces with calcium oxalate monohydrate kidney stones reflect underlying mineral precipitation mechanisms. Urolithiasis 45:235–248

    PubMed  CAS  Google Scholar 

  80. Kurz W, Fisher DJ (1998) Fundamentals of solidification. Trans Tech Publications Ltd., Zürich

    Google Scholar 

  81. Fleming DE, Van Riessen A, Chauvet MC, Grover PK, Hunter B, Van Bronswijk W, Ryall RL (2003) Intracrystalline proteins and urolithiasis: a synchrotron X-ray diffraction study of calcium oxalate monohydrate. J Bone Miner Res 18:1282–1291

    PubMed  CAS  Google Scholar 

  82. Langdon A, Wignall GR, Rogers KA, Sørensen ES, Denstedt J, Grohe B, Goldberg HA, Hunter GK (2009) Kinetics of calcium oxalate crystal growth in the presence of osteopontin isoforms: an analysis by scanning confocal interference microcopy. Calcif Tissue Int 84:240–248

    PubMed  CAS  Google Scholar 

  83. Kleber W, Bautsch H-J (1977) Einführung in die Kristallographie. Verl. Technik, Berlin

    Google Scholar 

  84. Cho KR, Kim YY, Yang PC, Cai W, Pan HH, Kulak AN, Lau JL, Kulshreshtha P, Armes SP, Meldrum FC, De Yoreo JJ (2016) Direct observation of mineral-organic composite formation reveals occlusion mechanism. Nat Commun 7:10187

    Google Scholar 

  85. Aizenberg J, Hanson J, Ilan M, Leiserowitz L, Koetzle TF, Addadi L, Weiner S (1995) Morphogenesis of calcitic sponge spicules—a role for specialized proteins interacting with growing crystals. Faseb J 9:262–268

    PubMed  CAS  Google Scholar 

  86. Swift DM, Sikes CS, Wheeler AP (1986) Analysis and function of organic matrix from sea-urchin tests. J Exp Zool 240:65–73

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Todd Simpson (Western Nanofabrication Facility, Faculty of Science, UWO) for assistance with electron microscopy, François Lagugné-Labarthet (Department of Chemistry, UWO) for assistance in Raman analysis, Kem Rogers (Department of Anatomy and Cell Biology, UWO) for providing the confocal microscope and Holger Eichhorn (Department of Chemistry & Biochemistry, University of Windsor, Ontario) for providing the X-ray spectrometer. The expert technical assistance of Honghong Chen (Department of Physiology & Pharmacology, UWO) is gratefully acknowledged. These studies were supported by the Natural Sciences and Engineering Research Council of Canada (NSERC; Grant #: R6PIN-2014-05793) and the Canadian Institutes of Health Research of Canada (CIHR; Grant #: MOP130572). J.S.G. was the recipient of Studentships from the Canadian Association for Dental Research (CADR) and the Institute of Musculoskeletal Health and Arthritis (IMHA) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Grohe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gleberzon, J.S., Liao, Y., Mittler, S. et al. Incorporation of osteopontin peptide into kidney stone-related calcium oxalate monohydrate crystals: a quantitative study. Urolithiasis 47, 425–440 (2019). https://doi.org/10.1007/s00240-018-01105-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-018-01105-x

Keywords

Navigation