Skip to main content
Log in

Sparsification and subexponential approximation

  • Original Article
  • Published:
Acta Informatica Aims and scope Submit manuscript

Abstract

Instance sparsification is well-known in the world of exact computation since it is very closely linked to the Exponential Time Hypothesis. In this paper, we extend the concept of sparsification in order to capture subexponential time approximation. We develop a new tool for inapproximability, called approximation preserving sparsification, and use it in order to get strong inapproximability results in subexponential time for several fundamental optimization problems such as min dominating set , min feedback vertex set , min set cover, min feedback arc set, and others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. All the problems discussed in this paper are defined in the appendix.

  2. These reductions rely on the fact that, in graphs without isolated vertices, a vertex cover is both a dominating set and a feedback vertex set.

  3. Two vertices are twins if they have the same neighborhood.

References

  1. Alekhnovich, M., Arora, S., Tourlakis, I.: Towards strong nonapproximability results in the Lovász-Schrijver hierarchy. Comput. Complex. 20, 615–648 (2011)

    Article  MATH  Google Scholar 

  2. Arora, S., Lund, C.: Hardness of approximation. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-Hard Problems, Chapter 10, pp. 399–446. PWS, Boston (1997)

    Google Scholar 

  3. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and intractability of approximation problems. J. Assoc. Comput. Mach. 45(3), 501–555 (1998)

    Article  MATH  Google Scholar 

  4. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation. Combinatorial Optimization Problems and Their Approximability Properties. Springer-Verlag, Berlin (1999)

    MATH  Google Scholar 

  5. Bonnet, E., Escoffier, B., Kim, E., Paschos, V.Th: On subexponential and FPT-time inapproximability. Algorithmica 71(3), 541–565 (2015)

  6. Bonnet, E., Paschos, V.Th.: Sparsification and subexponential approximation. CoRR (2014). arXiv:1402.2843

  7. Bourgeois, N., Escoffier, B., Paschos, V.Th.: Efficient approximation by “low-complexity” exponential algorithms. Cahier du LAMSADE 271, LAMSADE, Université Paris-Dauphine (2007). http://www.lamsade.dauphine.fr/cahiers/PDF/cahierLamsade271

  8. Bourgeois, N., Escoffier, B., Paschos, VTh: Approximation of max independent set, min vertex cover and related problems by moderately exponential algorithms. Discrete Appl. Math. 159(17), 1954–1970 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cai, L., Huang, X.: Fixed-parameter approximation: conceptual framework and approximability results. In: Bodlaender, H.L., Langston, M.A. (eds.) Proc. International Workshop on Parameterized and Exact Computation, IWPEC’06, volume 4169 of Lecture Notes in Computer Science, pp. 96–108. Springer-Verlag (2006)

  10. Chalermsook, P., Laekhanukit, B., Nanongkai, D.: Independent set, induced matching, and pricing: connections and tight (subexponential time) approximation hardnesses. In: IEEE Symposium on Foundations of Computer Science, FOCS’13, pp. 370–379 (2013)

  11. Chen, Y., Grohe, M., Grüber, M.: On parameterized approximability. Electron. Colloq. Comput. Complex. 14(106) (2007)

  12. Cygan, M., Pilipczuk, M.: Exact and approximate bandwidth. Theor. Comput. Sci. 411(40–42), 3701–3713 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dinur, I.: The PCP theorem by gap amplification. J. Assoc. Comput. Mach. 54(3) (2007) (Article 12)

  14. Downey, R. G., Fellows, M. R., McCartin, C.: Parameterized approximation problems. In: Bodlaender, H. L., Langston, M. A. (eds.) Proc. International Workshop on Parameterized and Exact Computation, IWPEC’06, volume 4169 of Lecture Notes in Computer Science, pp. 121–129. Springer-Verlag, NY (2006)

  15. Fürer, M., Gaspers, S., Kasiviswanathan, S.P.: An exponential time 2-approximation algorithm for bandwidth. Theor. Comput. Sci. 511, 23–31 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Halldórsson, M.M.: Approximating the minimum maximal independence number. Inform. Process. Lett. 46, 169–172 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Irving, R.W.: On approximating the minimum independent dominating set. Inform. Process. Lett. 37, 197–200 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9, 256–278 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  20. Johnson, D.S., Szegedy, M.: What are the least tractable instances of max independent set? In: Proc. Symposium on Discrete Algorithms, SODA’99, pp. 927–928 (1999)

  21. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

    Chapter  Google Scholar 

  22. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential time hypothesis. Bull. EATCS 105, 41–72 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Marathe, M.V., Ravi, S.S.: On approximation algorithms for the minimum satisfiability problem. Inform. Process. Lett. 58(1), 23–29 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Moshkovitz, D., Raz, R.: Two-query PCP with subconstant error. J. ACM 57(5), 29:1–29:29 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  26. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation and complexity classes. J. Comput. Syst. Sci. 43, 425–440 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Simon, H.U.: On approximate solutions for combinatorial optimization problems. SIAM J. Disc. Math. 3(2), 294–310 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Theory Comput. 3(6), 103–128 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The numerous very pertinent comments and suggestions of two anonymous reviewers are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Édouard Bonnet.

Appendix: Definitions of the problems discussed in the paper

Appendix: Definitions of the problems discussed in the paper

  • max independent set . Given a graph G(VE), determine a maximum cardinality set \(V' \subseteq V\), such that any two vertices of \(V'\) are not adjacent in G.

  • min vertex cover . Given a graph G(VE), determine a minimum cardinality set \(V' \subseteq V\), such that any edge in E has at least one of its endpoints in \(V'\).

  • min dominating set . Given a graph G(VE), determine a minimum cardinality set \(V' \subseteq V\) such that every vertex \(v \in V {\setminus } V'\) is neighbor of some vertex in \(V'\).

  • min independent dominating set . Given a graph G(VE), determine a minimum cardinality set \(V' \subseteq V\) that is simultaneously an independent and a dominating set.

  • min feedback vertex set . Given a graph G(VE), determine a minimum cardinality set \(V' \subseteq V\), such that any cycle of G has at least one vertex in \(V'\).

  • max complete bipartite subgraph . Given a graph G(VE), determine a maximum cardinality set \(V' \subseteq V\) that induces a complete bipartite graph.

  • max \(\ell \)-colorable induced subgraph . Given a graph G(VE) and some fixed constant \(\ell \), determine a maximum cardinality set \(V' \subseteq V\) that induces an \(\ell \)-colorable graph.

  • max planar induced subgraph. Given a graph G(VE), determine a maximum cardinality set \(V' \subseteq V\) that induces a planar graph.

  • min set cover. Given a system \(\mathcal {S}\) of subsets of a ground set C, determine a minimum cardinality subsystem \(\mathcal {S}'\) that covers C.

  • min hitting set. Given a system \(\mathcal {S}\) of subsets of a ground set C, determine a minimum cardinality subset \(C' \subseteq C\) that hits all the sets of \(\mathcal {S}'\).

  • max minimal vertex cover . Given a graph G(VE), determine a maximum cardinality set \(V' \subseteq V\), that is a minimal (for exclusion) vertex cover of G.

  • min feedback arc set. Given a directed graph G(VE), determine a minimum cardinality set \(E' \subseteq E\), such that any cycle of G has at least one edge in \(E'\).

  • min sat . Given a CNF-formula, find the assignment of variables that satisfies the smallest number of clauses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonnet, É., Paschos, V.T. Sparsification and subexponential approximation. Acta Informatica 55, 1–15 (2018). https://doi.org/10.1007/s00236-016-0281-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00236-016-0281-2

Navigation