Skip to main content

Advertisement

Log in

Children with epilepsy demonstrate macro- and microstructural changes in the thalamus, putamen, and amygdala

  • Paediatric Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Despite evidence for macrostructural alteration in epilepsy patients later in life, little is known about the underlying pathological or compensatory mechanisms at younger ages causing these alterations. The aim of this work was to investigate the impact of pediatric epilepsy on the central nervous system, including gray matter volume, cerebral blood flow, and water diffusion, compared with neurologically normal children.

Methods

Inter-ictal magnetic resonance imaging data was obtained from 30 children with epilepsy ages 1–16 (73% F, 27% M). An atlas-based approach was used to determine values for volume, cerebral blood flow, and apparent diffusion coefficient in the cerebral cortex, hippocampus, thalamus, caudate, putamen, globus pallidus, amygdala, and nucleus accumbens. These values were then compared with previously published values from 100 neurologically normal children using a MANCOVA analysis.

Results

Most brain volumes of children with epilepsy followed a pattern similar to typically developing children, except for significantly larger putamen and amygdala. Cerebral blood flow was also comparable between the groups, except for the putamen, which demonstrated decreased blood flow in children with epilepsy. Diffusion (apparent diffusion coefficient) showed a trend towards higher values in children with epilepsy, with significantly elevated diffusion within the thalamus in children with epilepsy compared with neurologically normal children.

Conclusion

Children with epilepsy show statistically significant differences in volume, diffusion, and cerebral blood flow within their thalamus, putamen, and amygdala, suggesting that epilepsy is associated with structural changes of the central nervous system influencing brain development and potentially leading to poorer neurocognitive outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Guerrini R (2006) Epilepsy in children. Lancet 367:499–524

    PubMed  Google Scholar 

  2. Hauser WA, Annegers JF, Kurland LT (1993) Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935-1984. Epilepsia 34:453–468

    CAS  PubMed  Google Scholar 

  3. MacEachern SJ, D'Alfonso S, McDonald RJ et al (2017) Most children with epilepsy experience postictal phenomena, often preventing a return to normal activities of childhood. Pediatr Neurol 72(42–50):e43

    Google Scholar 

  4. Danguecan AN, Smith ML (2017) Academic outcomes in individuals with childhood-onset epilepsy: mediating effects of working memory. J Int Neuropsychol Soc:23(7):594–604

    PubMed  Google Scholar 

  5. Hamiwka LD, Wirrell EC (2009) Comorbidities in pediatric epilepsy: beyond “just” treating the seizures. J Child Neurol 24:734–742

    CAS  PubMed  Google Scholar 

  6. Ottman R, Lipton RB, Ettinger AB, Cramer JA, Reed ML, Morrison A, Wan GJ (2011) Comorbidities of epilepsy: results from the epilepsy comorbidities and health (EPIC) survey. Epilepsia 52:308–315

    PubMed  Google Scholar 

  7. Berg AT, Baca CB, Rychlik K et al (2016) Determinants of social outcomes in adults with childhood-onset epilepsy. Pediatrics 137

    PubMed  PubMed Central  Google Scholar 

  8. Gilmore JH, Lin W, Prastawa MW, Looney CB, Vetsa YS, Knickmeyer RC, Evans DD, Smith JK, Hamer RM, Lieberman JA, Gerig G (2007) Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain. J Neurosci 27:1255–1260

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Knickmeyer RC, Gouttard S, Kang C et al (2008) A structural MRI study of human brain development from birth to 2 years. J Neurosci 28:12176–12182

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sampaio RC, Truwit CL (2001) Myelination in the developing human brain. Handbook of developmental cognitive neuroscience:35–44

  11. Forkert ND, Li MD, Lober RM, Yeom KW (2016) Gray matter growth is accompanied by increasing blood flow and decreasing apparent diffusion coefficient during childhood. AJNR Am J Neuroradiol 37:1738–1744

    CAS  PubMed  Google Scholar 

  12. Holmes GL, Ben-Ari Y (2001) The neurobiology and consequences of epilepsy in the developing brain. Pediatr Res 49:320–325

    CAS  PubMed  Google Scholar 

  13. Lee JH, Kim SE, Park CH et al (2015) Gray and white matter volumes and cognitive dysfunction in drug-naive newly diagnosed pediatric epilepsy. Biomed Res Int 2015:923861

    PubMed  PubMed Central  Google Scholar 

  14. O'Muircheartaigh J, Vollmar C, Barker GJ, Kumari V, Symms MR, Thompson P, Duncan JS, Koepp MJ, Richardson MP (2011) Focal structural changes and cognitive dysfunction in juvenile myoclonic epilepsy. Neurology 76:34–40

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Overvliet GM, Besseling RM, Jansen JF et al (2013) Early onset of cortical thinning in children with rolandic epilepsy. Neuroimage Clin 2:434–439

    PubMed  PubMed Central  Google Scholar 

  16. Baram TZ (2012) The brain, seizures and epilepsy throughout life: understanding a moving target. Epilepsy Curr 12:7–12

    PubMed  PubMed Central  Google Scholar 

  17. Nuyts S, D'Souza W, Bowden SC, Vogrin SJ (2017) Structural brain abnormalities in genetic generalized epilepsies: a systematic review and meta-analysis. Epilepsia 58:2025–2037

    CAS  PubMed  Google Scholar 

  18. Whelan CD, Altmann A, Botia JA et al (2018) Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study. Brain 141:391–408

    PubMed  PubMed Central  Google Scholar 

  19. Kimiwada T, Juhasz C, Makki M et al (2006) Hippocampal and thalamic diffusion abnormalities in children with temporal lobe epilepsy. Epilepsia 47:167–175

    PubMed  Google Scholar 

  20. Keller SS, Ahrens T, Mohammadi S, Möddel G, Kugel H, Ringelstein EB, Deppe M (2011) Microstructural and volumetric abnormalities of the putamen in juvenile myoclonic epilepsy. Epilepsia 52:1715–1724

    PubMed  Google Scholar 

  21. Nehlig A, Vergnes M, Waydelich R, Hirsch E, Charbonne R, Marescaux C, Seylaz J (1996) Absence seizures induce a decrease in cerebral blood flow: human and animal data. J Cereb Blood Flow Metab 16:147–155

    CAS  PubMed  Google Scholar 

  22. Le Bihan D (2013) Apparent diffusion coefficient and beyond: what diffusion MR imaging can tell us about tissue structure. Radiology 268:318–322

    PubMed  Google Scholar 

  23. Le Bihan D, Johansen-Berg H (2012) Diffusion MRI at 25: exploring brain tissue structure and function. Neuroimage 61:324–341

    PubMed  Google Scholar 

  24. Fisher RS, Cross JH, French JA, Higurashi N, Hirsch E, Jansen FE, Lagae L, Moshé SL, Peltola J, Roulet Perez E, Scheffer IE, Zuberi SM (2017) Operational classification of seizure types by the international league against epilepsy: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58:522–530

    PubMed  Google Scholar 

  25. Dai W, Garcia D, de Bazelaire C, Alsop DC (2008) Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 60:1488–1497

    PubMed  PubMed Central  Google Scholar 

  26. Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR (1998) A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 40:383–396

    CAS  PubMed  Google Scholar 

  27. Li MD, Forkert ND, Kundu P et al (2017) Brain perfusion and diffusion abnormalities in children treated for posterior fossa brain tumors. J Pediatr 185:173–180

    PubMed  Google Scholar 

  28. Stejskal E, Tanner J (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292

    CAS  Google Scholar 

  29. Mazziotta J, Toga A, Evans A et al (2001) A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (ICBM). Philos Trans R Soc Lond Ser B Biol Sci 356:1293–1322

    CAS  Google Scholar 

  30. Sakov A, Golani I, Lipkind D et al (2010) High-throughput data analysis in behavior genetics. Ann Appl Stat 4:743–763

    Google Scholar 

  31. Chilla GS, Tan CH, Xu C, Poh CL (2015) Diffusion weighted magnetic resonance imaging and its recent trend-a survey. Quant Imaging Med Surg 5:407–422

    PubMed  PubMed Central  Google Scholar 

  32. Haykin M, Gorman M, van Hoff J et al (2006) Diffusion-weighted MRI correlates of subacute methotrexate-related neurotoxicity. J Neuro-Oncol 76:153–157

    CAS  Google Scholar 

  33. Zhang L, Ravdin LD, Relkin N, Zimmerman RD, Jordan B, Lathan WE, Uluğ AM (2003) Increased diffusion in the brain of professional boxers: a preclinical sign of traumatic brain injury? AJNR Am J Neuroradiol 24:52–57

    CAS  PubMed  Google Scholar 

  34. Chappell MH, Ulug AM, Zhang L et al (2006) Distribution of microstructural damage in the brains of professional boxers: a diffusion MRI study. J Magn Reson Imaging 24:537–542

    PubMed  Google Scholar 

  35. Baliyan V, Das CJ, Sharma R et al (2016) Diffusion weighted imaging: technique and applications. World J Radiol 8:785–798

    PubMed  PubMed Central  Google Scholar 

  36. Sherman SM (2016) Thalamus plays a central role in ongoing cortical functioning. Nat Neurosci 19:533–541

    CAS  PubMed  Google Scholar 

  37. Steriade M, Llinas RR (1988) The functional states of the thalamus and the associated neuronal interplay. Physiol Rev 68:649–742

    CAS  PubMed  Google Scholar 

  38. Timofeev I, Steriade M (2004) Neocortical seizures: initiation, development and cessation. Neuroscience 123:299–336

    CAS  PubMed  Google Scholar 

  39. Blumenfeld H (2005) Cellular and network mechanisms of spike-wave seizures. Epilepsia 46(Suppl 9):21–33

    CAS  PubMed  Google Scholar 

  40. Futatsugi Y, Riviello JJ Jr (1998) Mechanisms of generalized absence epilepsy. Brain and Development 20:75–79

    CAS  PubMed  Google Scholar 

  41. Blumenfeld H (2003) From molecules to networks: cortical/subcortical interactions in the pathophysiology of idiopathic generalized epilepsy. Epilepsia 44(Suppl 2):7–15

    CAS  PubMed  Google Scholar 

  42. Blumenfeld H (2014) What is a seizure network? Long-range network consequences of focal seizures. Adv Exp Med Biol 813:63–70

    PubMed  PubMed Central  Google Scholar 

  43. Nolan MA, Redoblado MA, Lah S, Sabaz M, Lawson JA, Cunningham AM, Bleasel AF, Bye AM (2004) Memory function in childhood epilepsy syndromes. J Paediatr Child Health 40:20–27

    CAS  PubMed  Google Scholar 

  44. Haber SN (2016) Corticostriatal circuitry. Dialogues Clin Neurosci 18:7–21

    PubMed  PubMed Central  Google Scholar 

  45. Lin JJ, Riley JD, Hsu DA, Stafstrom CE, Dabbs K, Becker T, Seidenberg M, Hermann BP (2012) Striatal hypertrophy and its cognitive effects in new-onset benign epilepsy with centrotemporal spikes. Epilepsia 53:677–685

    PubMed  PubMed Central  Google Scholar 

  46. van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31:15775–15786

    PubMed  PubMed Central  Google Scholar 

  47. Bower SP, Vogrin SJ, Morris K et al (2003) Amygdala volumetry in “imaging-negative” temporal lobe epilepsy. J Neurol Neurosurg Psychiatry 74:1245–1249

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lv RJ, Sun ZR, Cui T et al (2014) Temporal lobe epilepsy with amygdala enlargement: a subtype of temporal lobe epilepsy. BMC Neurol 14:194

    PubMed  PubMed Central  Google Scholar 

  49. Joo EY, Hong SB, Tae WS, Han SJ, Seo DW, Lee KH, Lee MH (2006) Effect of lamotrigine on cerebral blood flow in patients with idiopathic generalised epilepsy. Eur J Nucl Med Mol Imaging 33:724–729

    CAS  PubMed  Google Scholar 

  50. Gaillard WD, Zeffiro T, Fazilat S, DeCarli C, Theodore WH (1996) Effect of valproate on cerebral metabolism and blood flow: an 18F-2-deoxyglucose and 15O water positron emission tomography study. Epilepsia 37:515–521

    CAS  PubMed  Google Scholar 

  51. Kaushal S, Tamer Z, Opoku F et al (2016) Anticonvulsant drug-induced cell death in the developing white matter of the rodent brain. Epilepsia 57:727–734

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

NDF is supported by the Canada Research Chairs program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils D. Forkert.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MacEachern, S.J., Santoro, J.D., Hahn, K.J. et al. Children with epilepsy demonstrate macro- and microstructural changes in the thalamus, putamen, and amygdala. Neuroradiology 62, 389–397 (2020). https://doi.org/10.1007/s00234-019-02332-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-019-02332-8

Keywords

Navigation